

Report for the Monitoring of Emissions to Air from the External Test Stack and Wet Test Stack Located at Linx Printing Technologies, Linx House, St Ives.

Part 1: Executive Summary

Permit Number: B18/14

Operator: Linx Printing Technologies Ltd

Installation: Linx House (External Test Stack and Wet Test Stack)

4251

Monitoring dates: 4th & 5th February 2020

Job Number: R20134

Version: 1

Address: Linx Printing Technologies Ltd

Linx House

8 Stocks Bridge Way

St Ives

Cambridgeshire, PE27 5JL

Monitoring Organisation: EnviroDat Ltd

Address: Cutbush Commercial

Cutbush Lane East Reading, RG2 9AF

Date of Report: 5th March 2020

Report Approved By: Yu Shen

MCERTS Registration Number: MM 06 727 (Level II, TE1, 2, 3 & 4)

Function: Senior Project Manager (Team Leader)

Signed:

Air quality & environmental consultants

CONTENTS

			Page No.
Part	1: Executive	Summary	
1.1	Monitoring Ol	ojectives	3
1.2	Monitoring Re	esults	4
1.3	Operating Info	ormation	6
1.4	Monitoring De	eviations	6
Part	2: Supportir	ng Information	
2.1	Appendix I:	General Information	7
2.2	Appendix II:	Emission Point Reference Data & Results	9
2.3	Appendix III:	Uncertainty Calculations	22
2.4	Appendix IV:	Velocity Profile Data	23

Notes to Report.

- a). EnviroDat Ltd, Report Template V11.
- b). This report should not be reproduced except in full, without written approval of Envirodat Ltd.
- c). Opinions and Interpretations herein are outside the scope of UKAS/MCerts Accreditation.

PART 1: EXECUTIVE SUMMARY

1.1 Monitoring Objectives

EnviroDat Ltd. was commissioned by Mr. Darren Page-Mitchell, on behalf of Linx Printing Technologies Ltd to monitor the stacks located at Linx House for a suite of pollutants - as prescribed in the operational permit B18/14 - in order to establish the environmental compliance. The monitoring campaign covered emissions from External Test Stack and Wet Test Stack.

MEK, Acetone and Ethanol were used to clean the parts of printing machine manually. The pollutants were extracted by the External Test Stack (Lab) and Wet Test Stack (Factory) to the atmosphere directly.

The pollutants monitored are summarised below:

Substances to be monitored	Emission Point Identification				
Substances to be monitored	External Test Stack	Wet Test Stack			
Total Volatile Organic Compounds (VOCs)	✓	✓			
Velocity	✓	✓			
Special requirements	None red	uested			

Version 1 Page 3 of 24

1.2 Monitoring Results

Emission Point Reference	Substance to be Monitored	Emission Limit Value	Periodic Monitoring Result	Estimate of Uncertainty (2σ at 95% confidence)	Units	Reference Conditions	Date of Sampling	Start and End Times	Monitoring Method Reference	Accreditation for use of Method (see note below)	Operating Status
	Volatile Organic Compounds (VOCs as carbon)	75	6.40	±0.94	mg(N)m ⁻³	101.3kPa, 273K, Wet gas, Stack Oxygen	04/02/2020	12:38-13:38			
External			39.6	±5.8				13:38-14:38		А	At 100%
Test Stack			1.05	±0.15				14:38-15:38	BS EN 12619		MCR
			15.7	±2.3				12:38-15:38]		

NOTE:

- A. EnviroDat Ltd MCerts/UKAS Accredited for sampling and analysis.
- EnviroDat Ltd Mcerts/UKAS Accredited for sampling only, UKAS Accredited analysis conducted by sub-contract laboratory.
- C. EnviroDat Ltd UKAS Accredited for sampling only (further clarification is given in section 1.4). Analysis of this component is not UKAS Accredited.
- D. The method for sampling and analysis is not UKAS or MCerts Accredited, method follows documented in-house procedure (further clarification is given in section 1.4).
- E. The method for sampling is not UKAS or MCerts Accredited, UKAS Accredited analysis conducted by sub-contract laboratory.

Version 1 Page 4 of 24

Emission Point Reference	Substance to be Monitored	Emission Limit Value	Periodic Monitoring Result	Estimate of Uncertainty (2σ at 95% confidence)	Units	Reference Conditions	Date of Sampling	Start and End Times	Monitoring Method Reference	Accreditation for use of Method	Operating Status	
										below)		
		75	63.4	±3.6	mg(N)m ⁻³			11:26-12:26				
Wet Test	Volatile Organic Compounds		46.7	±2.6			101.3kPa,		12:26-13:26]		At 100%
Stack	(VOCs as carbon)		65.5	±3.7		273K, Wet gas, Stack Oxygen	05/02/2020	13:26-14:26	┨	A	MCR	
			58.5	±3.3		Julian Onygon		11:26-14:26				

NOTE:

- A. EnviroDat Ltd MCerts/UKAS Accredited for sampling and analysis.
- EnviroDat Ltd Mcerts/UKAS Accredited for sampling only, UKAS Accredited analysis conducted by sub-contract laboratory.
- C. EnviroDat Ltd UKAS Accredited for sampling only (further clarification is given in section 1.4). Analysis of this component is not UKAS Accredited.
- D. The method for sampling and analysis is not UKAS or MCerts Accredited, method follows documented in-house procedure (further clarification is given in section 1.4).
- E. The method for sampling is not UKAS or MCerts Accredited, UKAS Accredited analysis conducted by sub-contract laboratory.

Version 1 Page 5 of 24

1.3 Operating Information

Emission		Process Type Process Duration					Comparison of Operator CEMS and Periodic Monitoring Results				
Point Reference			Process Duration	Fuel	Feedstock	Abatement	Load	Substance	CEMS Results	Periodic Monitoring Results	Units
External Tes Stack	04/02/2020	Extraction	Continuous	N/A	MEK, Acetone and Ethanol	N/A	Normal	N/A	N/A	N/A	N/A
Wet Test Stack	05/02/2020	Extraction	Continuous	N/A	MEK, Acetone and Ethanol	N/A	Normal	N/A	N/A	N/A	N/A

1.4 Monitoring Deviations

Emission Point Reference	Substance Deviations	Monitoring Deviations	Other Relevant Issues
External Test Stack	None	None	None
Wet Test Stack	None	None	None

Version 1 Page 6 of 24

PART 2: SUPPORTING INFORMATION

2.1 Appendix I: General Information

2.1.1 Monitoring organisation staff details

Monitoring at Linx Printing Technologies Ltd, Linx House was conducted by the following EnviroDat Engineers:

Team Leader, Yu Shen – MCERTs Level II (TE1, 2, 3 & 4) MM06 727

Technician, Niall Kester – MCERTs Trainee MM19 1573

2.1.2 Monitoring method details

MONITORING SCHEDULE						
Parameter	Standard Reference Method/Alternative		MCerts Accreditation			
VOCs	BS EN 12619	SP12619	MCerts			
Velocity	BS ISO 16911-1	SP16911	MCerts			

2.1.3 Monitoring organisation equipment and gas check list references

EQUIPMENT – LR68HDA						
Item	Reference	Calibration Due	PAT Due			
Flame Ionisation Detector Analyser	FID#01	12-May-20	Oct-20			
Flame Ionisation Detector Analyser	FID#06	21-May-20	Oct-20			
Data Logger	DL#03	08-Oct-20	-			
Data Logger	DL#01	05-Jan-21	-			
Digital Barometer	DB#27	05-Jan-21	-			
Heated Filter Head	HFH#02	02-Feb-21	Oct-20			

Version 1 Page 7 of 24

-20
-20
dity
b-21

Version 1 Page 8 of 24

2.2 Appendix II: Emission Point Reference Data & Results

2.2.1 Photograph of Sampling Location on External Test Stack

Sampling was taken from 10mm Hole on vertical section of stack with the 0.2m diameter. Accessed via the stairs to the top of building.

2.2.2 Photograph of Sampling Location on Wet Test Stack

Sampling was taken from 10mm Hole on vertical section of stack with the 0.9×0.7m diameter. Accessed via the step ladder

Report Reference: B18/14, Linx House, St Ives, February 2020

Version 1 Page 9 of 24

2.2.3 Homogeneity testing

BS EN 15259 stipulates that the exhaust gases emitted from combustion processes are tested to ensure homogeneity and that a representative sample is obtained during the monitoring, subject to a number of caveats as elucidated in Environment Agency guidance MID15259. The details of the testing at each emission point are summarised below:

Stack	Result of Homogeneity Testing	
Exhaust Stacks	N/A –homogeneity testing only required on stacks exceeding 1.13 m diameter, as specified in MID 15259. Homogeneity assumed and single point sampling acceptable.	

2.2.4 Gas analyser site measurements and calibrations

The data in the following Charts 1 - 2 and Tables 1 - 2 are expressed in mgm⁻³ @ STP and is uncorrected for O_2 . In Addition, VOC results are expressed as carbon equivalent. Calibration data is shown in Tables 3 - 4.

Table 1 - External Test Stack, Raw Data

Time	VOC (mgC/m³)	Comment
12:38:04	6.9	
12:39:04	7.3	
12:40:04	5.4	
12:41:04	7.1	
12:42:04	7.0	
12:43:04	5.1	
12:44:04	3.7	
12:45:04	5.1	
12:46:04	4.3	
12:47:04	4.3	
12:48:04	3.9	
12:49:04	3.1	
12:50:04	4.9	
12:51:04	4.6	
12:52:04	4.4	
12:53:04	3.6	
12:54:04	4.6	
12:55:04	5.1	
12:56:04	4.4	
12:57:04	3.4	
12:58:04	4.1	
12:59:04	3.8	
13:00:04	2.7	
13:01:04	2.8	

Time VOC (mgC/m³) Comment 13:02:04 6.9 13:03:04 5.2 13:04:04 5.9 13:05:04 5.7 13:06:04 39.5 13:07:04 35.8 13:09:04 17.6 13:10:04 7.9 13:11:04 7.1 13:12:04 5.5 13:13:04 4.5 13:14:04 3.2 13:15:04 3.2 13:15:04 3.2 13:15:04 4.0 13:17:04 2.8 13:18:04 4.3 13:19:04 4.1 13:20:04 3.5 13:19:04 4.1 13:20:04 3.5 13:19:04 4.1 13:20:04 3.5 13:19:04 4.1 13:20:04 3.5 13:19:04 4.1 13:20:04 3.5 13:21:04 2.7 13:22:04 4.2 13:23:04 3.3 13:24:04 3.6 13:25:04 3.9 13:25:04 3.9	
13:03:04 5.2 13:04:04 5.9 13:05:04 5.7 13:06:04 39.5 13:07:04 35.8 13:08:04 45.5 13:09:04 17.6 13:11:04 7.1 13:12:04 5.5 13:13:04 4.5 13:14:04 3.2 13:15:04 3.2 13:16:04 4.0 13:17:04 2.8 13:18:04 4.3 13:19:04 4.1 13:20:04 3.5 13:21:04 2.7 13:22:04 4.2 13:23:04 3.3 13:24:04 3.6 13:25:04 3.9	
13:04:04 5.9 13:05:04 5.7 13:06:04 39.5 13:07:04 35.8 13:08:04 45.5 13:09:04 17.6 13:10:04 7.9 13:11:04 7.1 13:12:04 5.5 13:13:04 4.5 13:14:04 3.2 13:15:04 3.2 13:16:04 4.0 13:17:04 2.8 13:18:04 4.3 13:19:04 4.1 13:20:04 3.5 13:21:04 2.7 13:22:04 4.2 13:23:04 3.3 13:24:04 3.6 13:25:04 3.9	
13:05:04 5.7 13:06:04 39.5 13:07:04 35.8 13:08:04 45.5 13:09:04 17.6 13:10:04 7.9 13:11:04 7.1 13:12:04 5.5 13:13:04 4.5 13:14:04 3.2 13:15:04 3.2 13:16:04 4.0 13:17:04 2.8 13:18:04 4.3 13:19:04 4.1 13:20:04 3.5 13:21:04 2.7 13:22:04 4.2 13:23:04 3.3 13:24:04 3.6 13:25:04 3.9	
13:06:04 39.5 13:07:04 35.8 13:08:04 45.5 13:09:04 17.6 13:10:04 7.9 13:11:04 7.1 13:12:04 5.5 13:13:04 4.5 13:14:04 3.2 13:15:04 3.2 13:16:04 4.0 13:17:04 2.8 13:18:04 4.3 13:19:04 4.1 13:20:04 3.5 13:21:04 2.7 13:22:04 4.2 13:23:04 3.3 13:24:04 3.6 13:25:04 3.9	
13:07:04 35.8 13:08:04 45.5 13:09:04 17.6 13:10:04 7.9 13:11:04 7.1 13:12:04 5.5 13:13:04 4.5 13:15:04 3.2 13:15:04 3.2 13:16:04 4.0 13:17:04 2.8 13:18:04 4.3 13:19:04 4.1 13:20:04 3.5 13:21:04 2.7 13:22:04 4.2 13:23:04 3.3 13:24:04 3.6 13:25:04 3.9	
13:08:04 45.5 13:09:04 17.6 13:10:04 7.9 13:11:04 7.1 13:12:04 5.5 13:13:04 4.5 13:15:04 3.2 13:15:04 3.2 13:16:04 4.0 13:17:04 2.8 13:18:04 4.3 13:19:04 4.1 13:20:04 3.5 13:21:04 2.7 13:22:04 4.2 13:23:04 3.3 13:24:04 3.6 13:25:04 3.9	
13:09:04 17.6 13:10:04 7.9 13:11:04 7.1 13:12:04 5.5 13:13:04 4.5 13:14:04 3.2 13:15:04 3.2 13:16:04 4.0 13:17:04 2.8 13:18:04 4.3 13:19:04 4.1 13:20:04 3.5 13:21:04 2.7 13:22:04 4.2 13:23:04 3.3 13:24:04 3.6 13:25:04 3.9	
13:10:04 7.9 13:11:04 7.1 13:12:04 5.5 13:13:04 4.5 13:14:04 3.2 13:15:04 3.2 13:16:04 4.0 13:17:04 2.8 13:18:04 4.3 13:19:04 4.1 13:20:04 3.5 13:21:04 2.7 13:22:04 4.2 13:23:04 3.3 13:24:04 3.6 13:25:04 3.9	
13:11:04 7.1 13:12:04 5.5 13:13:04 4.5 13:14:04 3.2 13:15:04 3.2 13:16:04 4.0 13:17:04 2.8 13:18:04 4.3 13:19:04 4.1 13:20:04 3.5 13:21:04 2.7 13:22:04 4.2 13:23:04 3.3 13:24:04 3.6 13:25:04 3.9	
13:12:04 5.5 13:13:04 4.5 13:14:04 3.2 13:15:04 3.2 13:16:04 4.0 13:17:04 2.8 13:18:04 4.3 13:19:04 4.1 13:20:04 3.5 13:21:04 2.7 13:22:04 4.2 13:23:04 3.3 13:24:04 3.6 13:25:04 3.9	
13:13:04 4.5 13:14:04 3.2 13:15:04 3.2 13:16:04 4.0 13:17:04 2.8 13:18:04 4.3 13:19:04 4.1 13:20:04 3.5 13:21:04 2.7 13:22:04 4.2 13:23:04 3.3 13:24:04 3.6 13:25:04 3.9	
13:14:04 3.2 13:15:04 3.2 13:16:04 4.0 13:17:04 2.8 13:18:04 4.3 13:19:04 4.1 13:20:04 3.5 13:21:04 2.7 13:22:04 4.2 13:23:04 3.3 13:24:04 3.6 13:25:04 3.9	
13:15:04 3.2 13:16:04 4.0 13:17:04 2.8 13:18:04 4.3 13:19:04 4.1 13:20:04 3.5 13:21:04 2.7 13:22:04 4.2 13:23:04 3.3 13:24:04 3.6 13:25:04 3.9	
13:16:04 4.0 13:17:04 2.8 13:18:04 4.3 13:19:04 4.1 13:20:04 3.5 13:21:04 2.7 13:22:04 4.2 13:23:04 3.3 13:24:04 3.6 13:25:04 3.9	
13:17:04 2.8 13:18:04 4.3 13:19:04 4.1 13:20:04 3.5 13:21:04 2.7 13:22:04 4.2 13:23:04 3.3 13:24:04 3.6 13:25:04 3.9	
13:18:04 4.3 13:19:04 4.1 13:20:04 3.5 13:21:04 2.7 13:22:04 4.2 13:23:04 3.3 13:24:04 3.6 13:25:04 3.9	
13:19:04 4.1 13:20:04 3.5 13:21:04 2.7 13:22:04 4.2 13:23:04 3.3 13:24:04 3.6 13:25:04 3.9	
13:20:04 3.5 13:21:04 2.7 13:22:04 4.2 13:23:04 3.3 13:24:04 3.6 13:25:04 3.9	
13:21:04 2.7 13:22:04 4.2 13:23:04 3.3 13:24:04 3.6 13:25:04 3.9	
13:22:04 4.2 13:23:04 3.3 13:24:04 3.6 13:25:04 3.9	
13:23:04 3.3 13:24:04 3.6 13:25:04 3.9	
13:24:04 3.6 13:25:04 3.9	
13:25:04 3.9	
13:26:04 3.4	
13:27:04 2.8	
13:28:04 3.6	
13:29:04 2.7	
13:30:04 2.4	
13:31:04 2.8	
13:32:04 2.4	
13:33:04 1.5	
13:34:04 2.1	
13:35:04 2.0	
13:36:04 2.4	
13:37:04 14.2	
13:38:04 11.7	
13:39:04 6.2	
13:40:04 13.1	
13:41:04 21.4	
13:42:04 14.0	
13:43:04 10.7	
13:44:04 15.3	
13:45:04 56.1	
13:46:04 30.0	
13:47:04 89.1	
13:48:04 164.0	

Time 13:49:04 13:50:04 13:51:04 13:52:04 13:53:04 13:54:04 13:55:04 13:56:04	VOC (mgC/m³) 104.3 90.7 112.1 63.7 54.2 62.1	Comment
13:50:04 13:51:04 13:52:04 13:53:04 13:54:04 13:55:04 13:56:04	90.7 112.1 63.7 54.2	
13:51:04 13:52:04 13:53:04 13:54:04 13:55:04 13:56:04	112.1 63.7 54.2	
13:52:04 13:53:04 13:54:04 13:55:04 13:56:04	63.7 54.2	
13:53:04 13:54:04 13:55:04 13:56:04	54.2	
13:54:04 13:55:04 13:56:04		
13:55:04 13:56:04		
13:56:04	62.6	
	60.7	
13:57:04	44.9	
13:58:04	34.6	
13:59:04	17.9	
14:00:04	22.3	
	26.6	
14:01:04		
14:02:04	29.3	
14:03:04	20.8	
14:04:04	29.3	
14:05:04	28.2	
14:06:04	28.7	
14:07:04	36.4	
14:08:04	36.3	
14:09:04	21.0	
14:10:04	32.4	
14:11:04	55.1	
14:12:04	30.2	
14:13:04	28.2	
14:14:04	32.5	
14:15:04	31.4	
14:16:04	50.1	
14:17:04	54.7	
14:18:04	43.2	
14:19:04	59.4	
14:20:04	37.2	
14:21:04	26.7	
14:22:04	120.2	
14:23:04	72.7	
14:24:04	61.1	
14:25:04	44.7	
14:26:04	34.6	
14:27:04	29.1	
14:28:04	21.8	
14:29:04	16.5	
14:30:04	16.1	
14:31:04	12.8	
14:32:04	11.3	
14:33:04	9.3	
14:34:04	8.9	
14:35:04	6.3	

Time	VOC (mgC/m³)	Comment
14:36:04	7.5	
14:37:04	5.3	
14:38:04	6.9	
14:39:04	5.6	
14:40:04	3.9	
14:41:04	4.7	
14:42:04	3.5	
14:43:04	5.0	
14:44:04	3.4	
14:45:04	3.4	
14:46:04	2.8	
14:47:04	2.2	
14:48:04	1.4	
14:49:04	1.8	
14:50:04	1.1	
14:51:04	0.7	
14:52:04	0.0	
14:53:04	0.1	
14:54:04	0.0	
14:55:04	0.0	
14:56:04	0.4	
14:57:04	0.5	
14:58:04	0.1	
14:59:04	0.4	
15:00:04		
15:01:04	0.0	
15:02:04	0.5	
15:03:04	0.5	
15:04:04	0.5	
15:05:04	0.0	
15:06:04	0.4	
15:07:04	0.6	
15:08:04	0.2	
15:09:04	0.6	
15:10:04	0.6	
15:11:04	0.2	
15:12:04	0.0	
15:13:04	0.5	
15:14:04	0.4	
15:15:04	0.0	
15:16:04	0.5	
15:17:04	0.3	
15:18:04	0.5	
15:19:04	0.2	
15:20:04	0.5	
15:21:04	0.0	
15:22:04	0.5	

Time	VOC (mgC/m³)	Comment
15:23:04	0.7	
15:24:04	0.5	
15:25:04	0.4	
15:26:04	0.6	
15:27:04	0.3	
15:28:04	0.4	
15:29:04	0.2	
15:30:04	0.7	
15:31:04	0.6	
15:32:04	0.5	
15:33:04	0.8	
15:34:04	0.1	
15:35:04	0.2	
15:36:04	0.5	
15:37:04	0.5	
15:38:04	0.5	

Table 2 - Wet Test Stack, Raw Data

Time	VOC (mgC/m³)	Comment
11:26:26	60.4	
11:27:26	40.7	
11:28:26	42.4	
11:29:26	91.3	
11:30:26	90.9	
11:31:26	150.4	
11:32:26	82.7	
11:33:26	61.6	
11:34:26	67.4	
11:35:26	63.6	
11:36:26	71.3	
11:37:26	108.8	
11:38:26	69.5	
11:39:26	39.5	
11:40:26	54.6	
11:41:26	41.2	
11:42:26	89.1	
11:43:26	70.2	
11:44:26	56.1	
11:45:26	50.8	
11:46:26	44.3	
11:47:26	38.4	
11:48:26	41.9	

Time	VOC (mgC/m³)	Comment
11:49:26	63.3	
11:50:26	44.3	
11:51:26	68.3	
11:52:26	67.2	
11:53:26	57.8	
11:54:26	52.2	
11:55:26	59.8	
11:56:26	40.7	
11:57:26	37.9	
11:58:26	53.0	
11:59:26	52.7	
12:00:26	84.1	
12:01:26	82.0	
12:02:26	86.9	
12:03:26	64.4	
12:04:26	57.2	
12:05:26	49.6	
12:06:26	46.0	
12:07:26	45.5	
12:08:26	34.9	
12:09:26	31.0	
12:10:26	70.8	
12:11:26	86.5	
12:12:26	68.5	
12:13:26	53.1	
12:14:26	65.3	
12:15:26	46.0	
12:16:26	70.0	
12:17:26	84.7	
12:18:26	80.6	
12:19:26	70.1	
12:20:26	94.4	
12:21:26	89.5	
12:22:26	62.1	
12:23:26	57.0	
12:24:26	60.0	
12:25:26	39.9	
12:26:26	38.7	
12:27:26	41.9	
12:28:26	32.5	

Time	VOC (mgC/m³)	Comment
12:29:26	31.7	Comment
12:30:26	35.2	
12:30:26	46.6	
12:32:26	39.7	
12:33:26	34.2	
12:34:26	42.4	
12:35:26	46.1	
12:36:26	88.3	
12:37:26	86.6	
12:38:26	78.0	
12:39:26	89.2	
12:40:26	78.9	
12:41:26	56.5	
12:42:26	54.9	
12:43:26	49.8	
12:44:26	38.2	
12:45:26	40.3	
12:46:26	67.5	
12:47:26	52.9	
12:48:26	29.6	
12:49:26	29.1	
12:50:26	37.9	
12:51:26	34.3	
12:52:26	25.2	
12:53:26	26.4	
12:54:26	69.2	
12:55:26	43.6	
12:56:26	45.8	
12:57:26	78.6	
12:58:26	96.6	
12:59:26	86.3	
13:00:26	88.5	
13:01:26	76.3	
13:02:26	55.4	
13:03:26	67.1	
13:04:26	67.5	
13:05:26	60.7	
13:06:26	57.5	
13:07:26	51.6	
13:08:26	34.7	

Time	VOC (mgC/m³)	Comment
13:09:26	42.2	Comment
13:10:26	37.2	
13:10:26	29.2	
13:12:26	27.5	
13:13:26	30.3	
13:14:26	25.8	
13:15:26	28.2	
13:16:26	27.1	
13:17:26	26.9	
13:18:26	26.2	
13:19:26	26.5	
13:20:26	21.6	
13:21:26	23.6	
13:22:26	25.6	
13:23:26	25.4	
13:24:26	21.8	
13:25:26	26.7	
13:26:26	19.3	
13:27:26	22.0	
13:28:26	20.6	
13:29:26	21.8	
13:30:26	21.8	
13:31:26	20.6	
13:32:26	21.3	
13:33:26	24.0	
13:34:26	39.2	
13:35:26	57.2	
13:36:26	40.5	
13:37:26	66.6	
13:38:26	50.8	
13:39:26	52.1	
13:40:26	64.8	
13:41:26	75.7	
13:42:26	49.1	
13:43:26	49.2	
13:44:26	51.7	
13:45:26	57.7	
13:46:26	99.1	
13:47:26	80.7	
13:48:26	63.1	

Time	VOC (mgC/m³)	Comment
13:49:26	57.9	
13:50:26	47.3	
13:51:26	39.9	
13:52:26	46.6	
13:53:26	57.6	
13:54:26	65.3	
13:55:26	93.3	
13:56:26	119.5	
13:57:26	62.1	
13:58:26	67.3	
13:59:26	78.4	
14:00:26	99.7	
14:01:26	57.3	
14:02:26	75.7	
14:03:26	63.1	
14:04:26	46.0	
14:05:26	79.5	
14:06:26	124.0	
14:07:26	60.1	
14:08:26	62.8	
14:09:26	94.8	
14:10:26	107.7	
14:11:26	88.4	
14:12:26	158.0	
14:13:26	118.9	
14:14:26	69.6	
14:15:26	62.1	
14:16:26	83.6	
14:17:26	91.4	
14:18:26	73.8	
14:19:26	79.7	
14:20:26	104.5	
14:21:26	75.1	
14:22:26	77.5	
14:23:26	62.2	
14:24:26	64.4	
14:25:26	45.8	
14:26:26	48.2	

Table 3 – External Test Stack, Analyser Calibration Data

	ANALYSER CALIBRATION DATA					
Pre Sampling Check						
		NO (ppm)	CO (ppm)	O ₂ (%)	VOC's (ppm)	
Range					100	
Zero Gas	Cylinder No.				AIR	
Span Gas	Cylinder No.				VC37840	
	Certified Value				98.2	
Zero Check	Value				0.2	
<2 x repeat	ability (Yes/No)				YES	
	Dov	wn Line Zero	& Span Check			
Zero Gas	Value				0.2	
	<2% of span				YES	
Span Gas	Value				98.1	
	Within 2% of span				YES	
	P	ost Sampling	Drift Check			
Zero Gas	Value				0.4	
	Drift (%)				0.2	
	Validation				No Correction Required	
Span Gas	Value				98.3	
	Drift (%)				0.0	
	Validation				No Correction Required	

Table 4 – Wet Test Stack, Analyser Calibration Data

	ANALYSER CALIBRATION DATA				
Pre Sampling Check					
		NO (ppm)	CO (ppm)	O ₂ (%)	VOC's (ppm)
Range					100
Zero Gas	Cylinder No.				AIR
Span Gas	Cylinder No.				VC37840
	Certified Value				98.2
Zero Check	Value				0.2
<2 x repeat	ability (Yes/No)				YES
	Dov	wn Line Zero	& Span Check		
Zero Gas	Value				0.2
	<2% of span				YES
Span Gas	Value				98
	Within 2% of span				YES
	P	ost Sampling	Drift Check		
Zero Gas	Value				0.3
	Drift (%)				0.1
	Validation				No Correction Required
Span Gas	Value				98.1
	Drift (%)				0.0
	Validation				No Correction Required

2.3 Appendix III: Uncertainty Calculation

2.3.1 External Test Stack, Uncertainty Calculations

VOC - Measurement performance related to stationary conditions						
Performance characteristic	Uncertainty	Value of uncertainty quantity				
Standard deviation of repeatability at zero	u _{r0}	0.80				
Standard deviation of repeatability at span level	Uns	0.10				
Lack of fit	unt	0.37				
Drift	u _{Odr}	1.03				
volume or pressure flow dependence	U _{spres}	0.00				
atmopsheric pressure dependence	U _{apres}	0.00				
ambient temperature dependence	U _{temp}	0.00				
NH3 (20 mg/m3)	U _{interf}	0.00				
CO2 (15%)	-	0.00				
H2O (30%)	-	0.00				
Error on Logger voltage		0.10				
Dependence on voltage	U _{valt}	0.03				
osses in the line (leak)	U _{look}	0.18				
Uncertainty of calibration gas	U _{calib}	0.18				

VOC Measurement uncertainty	Result	15.69	mg/m ³	
Combined uncertainty		1.13	mg/m ³	
Expanded uncertainty	k = 2	2.26	mg/m ³	
Uncertainty corrected to std conds		2.26	mg.m-3 (corrected)	
Expanded uncertainty	3.02	% ELV		
Expanded uncertainty	expressed with a level of confidence of 95%	2.26 mg.m ⁻³ of result		

2.3.2 Wet Test Stack, Uncertainty Calculations

VOC - Measurement performand	nditions			
Performance characteristic	Uncertainty Value of uncerta			
Standard deviation of repeatability at zero	U _{rD}	0.80		
Standard deviation of repeatability at span level	Uni	0.10		
Lack of fit	Ufit	0.37		
Drift	U _{Odr}	1.27		
volume or pressure flow dependence	Uspres	0.00		
atmopsheric pressure dependence	Uapres	0.07		
ambient temperature dependence	U _{temp}	0.00		
NH3 (20 mg/m3)	U _{interf}	0.00		
CO2 (15%)		0.00		
H2O (30%)	-	0.00		
Error on Logger voltage	-	0.10		
Dependence on voltage	U _{volt}	0.03		
losses in the line (leak)	Ulask	0.68		
Uncertainty of calibration gas	Ucalib	0.68		

VOC Measurement uncertain	nty Res	ult 58.55	mg/m ³
Combined uncertainty		1.64	mg/m ³
Expanded uncertainty	k = 2	3.29	mg/m ³
Uncertainty corrected to std co	nds	3.29	mg.m-3 (corrected)
Expanded uncertainty	expressed with a level of confidence of 95%	4.38	% ELV
Expanded uncertainty	expressed with a level of confidence of 95%	3.29	ma.m ⁻³ of result

Report Reference: B18/14, Linx House, St Ives, February 2020

2.4 Appendix IV: Velocity Profile Data

2.4.1 External Test Stack, Velocity Profile Data

stack ID stack Dime		Only enter data	into GE	PEEN C	OLOUB course	and the second section of the latest	in any and if and fad			
tack Dime		F 10				is - Ammend prai	in squares if needed			
		Exte	mal le	st Sta	Rectangular		Job Nu	mbor		R201
HACK DITTIE		0.20			Circular			Date:		04/02/20
	ensions (m)	Pitot Cal.=Cp		- 1	0000	AREA (m²)		ndard:		169
			molino	Line		0.031		npling	Line F	
Sample	Distance	Pitot Static	DelP	Swirl	Gas	Distance	Pitot Static		Swirl	
Point No.	along line	Reading	@0°	Angle	Temp.	along line	Reading	@0°	Angle	
	(m)	(mmH ₂ O)		Deg.	(°C)	(m)	(mmH ₂ O)		Deg.	(°C)
1	0.10	8.7	2.10	3	24	0.10				
2										
3										
4										
5										
6										
7										
8										
9										
10										
	Mean (1)	8.70			24.20	Mean (2)				
		Swirl Noted? (Y/N)	1	V			Swirl Noted? (Y/N)			
						OF THE APP	LIED STANDARD			
		() = 0.5(Mean (1) +	Mean (2))+2			297.2k			Okay
	ige of Gas Ter				Permited %k	5%		9.3 to	39.1	
-		(in sample line A or						8.7		(mmH ₂ O)
		(in sample line A or	B)=					8.7	_	(mmH₂O)
	t/Lowest (max				9.0:1	Okay	1.0:1	Minz	0.5	Okay
	nber of Sample	Lines			1	Total Points to				Yes
lequired Poin					1		neet Standard?			Yes
otal Points A	vailable				1	Flow Paramete	rs Meet Standard?			Yes
	0.0		0.41	PRE	SSURE TRA	VERSE DAT	Α			
re (mmH2O)	9.0		NO.	TO:		THE		NR		
E E	9.0					A		W.		
	8.0	100000								70(3)
Velocity Pressu	7.0	LALANT		The last	MINE		LANCE			145
Ϋ́	7.0		4/2	11:7		9/4/2 18		1		1
늉						The Laboratory				
မ္မ	6.0				11052163	50.00				2000
>										7.73
1	5.0	Carrie		190	San Francisco	No. of Street,	Carl Section			200
					0	.10				

Version 1 Page 23 of 24

2.4.2 Wet Test Stack, Velocity Profile Data

	Stand	AREA (m²) 0.630 Distance along line (m) 0.18 0.53	Rectangular Circular 0000 A Gas Temp. (°C) 19	x 0.70 npling Lin Del.P Swi	We: 0.90 Ptot Cal.=Cp	ensions (m) ensions (m)	
Date: 04/02/200 ndard: 169 mpling Line B Del.P Swirl Gas @0° Angle Temp.	Stand Sam Pitot Static Reading	0.630 Distance along line (m) 0.18	Rectangular Circular 0000 A Gas Temp. (°C) 19	x 0.70 npling Lin Del.P Swi @0° Ang	0.90 Ptot Cal.=Cp		Stack Dime
Date: 04/02/200 ndard: 169 mpling Line B Del.P Swirl Gas @0° Angle Temp.	Stand Sam Pitot Static Reading	0.630 Distance along line (m) 0.18	Orcular 0000 A Gas Temp. (°C)	npling Lin Del.P Swi	Pitot Cal.=Cp		
ndard: 169 mpling Line B Del.P Swirl Gas @0° Angle Temp.	Stand Sam Pitot Static Reading	0.630 Distance along line (m) 0.18	0000 A Gas Temp. (°C)	Del.P Swi	Pitot Cal.=Op	(III) ellolete	
Del.P Swirl Gas @0° Angle Temp.	Sam Pitot Static Reading	0.630 Distance along line (m) 0.18	Gas Temp. (°C) 19	Del.P Swi			raon Diiiio
Del.P Swirl Gas @0° Angle Temp.	Pitot Static Reading	Distance along line (m) 0.18	Gas Temp. (°C) 19	Del.P Swi			
@0° Angle Temp.	Reading	along line (m) 0.18	Temp. (°C) 19	@0° Ang	B11 1 B1 11	·	
	-	(m) 0.18	(°C)		Pitot Static	Distance	Sample
Deg. (°C)	(mmH ₂ O)	0.18	19		Reading	along line	Point No.
			19	De	(mmH ₂ O)	(m)	
				1.00 2	1.3	0.18	1
		0.00	19	0.20 1	0.5	0.53	2
					5.5	0.00	3
							4
							5
							6
							7
							8
							9
		(0)	40.00		0.00		10
		Mean (2)	18.80		0.90	Mean (1)	
	Swirl Noted? (Y/N)			N	Swirl Noted? (Y/N)		
3.81 m/s	Average Velocity	30.14	essure (Inch Hg)	Barometric	1	re (mmH2O)	tatic Pressur
4.2 to 33.4			Permited %k	B) =		ge of Gas Ter Static Reading	
(1-)							
(40)	2.4-1	Okay	0.0-1	5,-		-	
Yes					-		
No No					LINGS		
Yes			2				Required Phin
Tes	eters Meet Standard?						tequired Point otal Points A
4.2 to 33.4 1.3 (mml- 0.5 (mml-	2.4:1 neet Standard neet Standard?	5% Okay Total Points to n Sample plane m	73 = Permited %k 9.0:1 2	Mean (2)) + B) =	C) = 0.5(Mean (1) + 1 mp. (in sample line A or (in sample line A or (imum 9:1)	ge of Gas Ter Static Reading Static Reading /Low est (max iber of Sample	Permitted Ran Highest Pitot-S Low est Pitot-S Ratio: Highest Required Num