Page 1 of 22

Client **Linx Printing Technologies Limited**

Linx House

8 Stocks Bridge Way

St Ives

Cambridgeshire

PE27 5JL

Part 1: Executive Summary

Report for the Periodic Monitoring of Emissions to Air.

Site St Ives

Plant **Environmental Chamber Room 2**

Sampling Date 4th November 2015 Report Date 2nd December 2015

Job Number EM-2112 Permit Number B18/14

Report Prepared by: Print **Harpreet Badwal**

> MM03 149 MCERTS No. Level 2 TE: 1,2,3,4

Report Approved by: Sign

> Print **Derek Myers**

MCERTS No. MM02 115 Level 2 TE: 1,2,3,4

REC Ltd Environmental Monitoring

Unit 19 Bordesley Green Trading Estate Bordesley Green Road Birmingham B8 1BZ

Tel: 0845 676 9303 Company Registration No 03133832

Contents

Page 1	Part 1: Executive Summary
Page 2	Contents
Page 3	Monitoring Objectives
Page 3	Special Monitoring Requirements
Page 3	Summary Of Methods
Page 4	Summary Of Results
Page 5	Summary Of Results, Exhaust Gases
Page 6	Operating Information
Page 6	Comments On Monitoring Procedures
Page 7	Part 2: Supporting Information
Page 8	Appendix 1
Page 9	Emission Monitoring Procedures and Instrumentation
Page 10	Sampling Personnel
Page 10	Equipment References
Page 11	Appendix 2
Page 12	Preliminary Velocity Traverse Data
Page 13	Exhaust Gases - Continuous Analysis Data
Page 14	Chart 1 - VOC Emissions Data
Page 15	Appendix 3
Page 16	Diagram of Sampling Location
Page 17	Generic Calculations
Page 18	Flow Calculations
Page 19	Concentration Calculation
Page 20	Uncertainty Estimate Calculations - Instrumental Techniques
Page 21	Appendix 4
Page 22	Uncertainty Estimates:- TOC

Visit 1 of 2015

Page 3 of 22

Monitoring Objectives

The monitoring was undertaken to check compliance with authorised emission limits.

All monitoring procedures were carried out to the MCERTS requirements under the REC Environmental Monitoring quality system to ISO 17025: 2005.

Monitoring was undertaken for the listed emissions from the following sampling positions:

Sampling Location	Emission
Environmental Chamber Room 2	Total organic carbon

Special Monitoring Requirements

There were no special requirements for this monitoring campaign.

Summary of Methods

Emission	Method number	Method standard
Gas velocity and volume flow	TPM/01A	BS EN ISO 16911-1:2013
тос	TPM/13	BS EN 12619 : 2013

Page 4 of 22

Summary Of Results

The table presents the atmospheric emissions from the tests undertaken on behalf of Linx Printing Technologies Limited The results were measured from the sample positions downstream of the arrestment plant.

Emission at	Sampling			Emission	Authorised	Uncertainty	Detection	Mass
St Ives	Time			Result	Limit	+/-	Limit	Emission
Environmental Chamber Room 2	Date	Start	End	mg/m³*	mg/m³*	mg/m³*	mg/m³∗	g/h
тос	04/11/15	09:45	11:15	16.5	75	1.2	0.2	7.1

* at reference conditions	Stack Gas Weight	0 °C	Without correction for moisture		
	29.00 Kg/kmol	101.3 kPa	Oxygen	No Correction	%

Where applicable Oxides of nitrogen results are expressed as nitrogen dioxide

TOC results are expressed as total carbon

Throughout Report: * Reference conditions (see above)

** Analysis not required # - UKAS accredited only
ND Non detectable ## - Not Accredited
s - Subcontracted laboratory analysis N/A Not applicable

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a 95% confidence level. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

All tests included in this report are accredited under UKAS and MCERTS accreditation schemes unless otherwise stated.

Opinions and interpretations expressed herein are outside the scope of MCERTS and UKAS accreditation.

Nm³ 273 K, 101.3 kPa

Page 5 of 22

Summary Of Results, Exhaust Gases

The table presents the atmospheric emissions from the tests undertaken on behalf of **Linx Printing Technologies Limited**The results were measured from the sample positions downstream of the arrestment plant.

	sion at lves	Sampling Time			Emission Result	Authorised Limit	Uncertainty +/-	Detection Limit	Mass Emission
Environmental C	Chamber Room 2	Date	Start	End	mg/m³∗	mg/m ³ *	mg/m³*	mg/m³*	g/h
TOC	Test 1	04/11/15	09:45	10:15	30.5	75	1.3	0.2	13.1
тос	Test 2	04/11/15	10:15	10:45	17.7	75	1.2	0.2	7.6
тос	Test 3	04/11/15	10:45	11:15	1.2	75	1.2	0.2	0.5

I	* at ref	Stack Gas Weight	0 °C	Without correction for moisture
	Conditions	29.00 Kg/kmol	101.3 kPa	Oxygen No Correction %

Where applicable Oxides of nitrogen results are expressed as nitrogen dioxide

TOC results are expressed as total carbon

Throughout Report: * Reference conditions (see above)

** Analysis not required #- UKAS accredited only
ND Non detectable ##- Not Accredited
s - Subcontracted laboratory analysis N/A Not applicable

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a 95% confidence level. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

All tests included in this report are accredited under UKAS and MCERTS accreditation schemes unless otherwise stated. Opinions and interpretations expressed herein are outside the scope of MCERTS and UKAS accreditation.

Nm³ 273 K, 101.3 kPa

Page 6 of 22

Operating Information

The table below shows details of the operating information on each sampling date for:

Environmental Chamber Room 2

Date	Process type	Process duration	Fuel	Feedstock	Abatement	Load
04/11/2015	Environmental Test Chamber	Continuous	N/A	Methyl Ethyl Ketone	None	Three printers being tested at 50°C

There are no CEM's available on this process.

Comments & Monitoring Deviations

A waste gas homogeneity test to BS EN 15259:2007 (MID) is not required:-

The homogeneity test is not applicable to non-combustion processes.

The homogeneity test is not applicable to duct areas less than 1 m².

All monitoring was performed in accordance with the relevant procedures.

The sampling location is a vertical duct.

Only one sample port was available on the vertical duct.

The velocity and temperature profile at the sampling location met the requirements of BS EN 13284-1: 2002.

When the results are expressed as non-detected the mass emissions are calculated from the detection limit and therefore they are worst case results.

Page 7 of 22

Part 2: Supporting Information

Report for the Periodic Monitoring of Emissions to Air.

Client Linx Printing Technologies Limited

Site St Ives

Plant Environmental Chamber Room 2

Sampling Date 4th November 2015 Report Date 2nd December 2015

Job Number EM-2112 Permit Number B18/14

Report Prepared by: Print Harpreet Badwal

MCERTS No. MM03 149 Level 2 TE: 1,2,3,4

Report Approved by: Sign

Print Derek Myers

MCERTS No. MM02 115 Level 2 TE: 1,2,3,4

1783

REC Ltd Environmental Monitoring

Unit 19 Bordesley Green Trading Estate Bordesley Green Road Birmingham B8 1BZ

Tel: 0845 676 9303

Company Registration No 03133832

Linx Printing Technologies Limited, St Ives, Permit No: B18/14, R/15-6357, v1

Visit 1 of 2015

Page 8 of 22

APPENDIX 1

Page 9 of 22

Emission Monitoring Procedures And Instrumentation

Gas velocity and temperature

Documented in-house procedure TPM01/A to the main procedural requirements of BS EN ISO 16911-1:2013 Velocity and temperature measurements are performed using a calibrated Pitot tube, a calibrated pressure differential reading device and a calibrated thermocouple. Velocity and possible flow deviation measurements are carried out at selected, representative points in the gas stream.

Total organic carbon

Documented in-house procedure TPM/13 to the main procedural requirements of BS EN 12619:2013. Continuous analysis using probe, sample line and multi range Flame Ionisation Detector (FID) analyser. The analyser is calibrated before and during the tests using certified gas mixtures of nitrogen, oxygen and propane. Sampling points are selected in accordance with the findings of any BS EN 15259 assessment.

Sampling Project Personnel Competency And Expiry Dates

Report prepared by:	Harpreet Badwal	MCERTS No MM03 149	Level 1	Level 2 30/09/2018	TE1 30/09/2018	TE2 30/04/2019	TE3 31/10/2019	TE4 31/10/2019
Report authorised by:	Derek Myers	MM02 115	-	30/09/2017	31/05/2018	30/11/2018	30/11/2018	30/11/2018
Team leader:	Harpreet Badwal	MM03 149	-	30/09/2018	30/09/2018	30/04/2019	31/10/2019	31/10/2019
Team leader:	Aidan Wrynne	MM08 921	_	31/05/2017	31/05/2017	31/11/2018	30/11/2017	30/06/2018

Equipment References

Equipment	Reference Number
FID	AQ271
Heated Line	HL40
Heated Filter	Sintered
Stack Thermocouple	PTTS97
Timer / Stopwatch	ST41
Barometer	WS03
Pitot	PT129
Thermometer	TK28
Manometer	PI03

Linx Printing Technologies Limited, St Ives, Permit No: B18/14, R/15-6357, v1 $\,$

Visit 1 of 2015

Page 11 of 22

APPENDIX 2

Page 12 of 22

Date	04/11/2015
Time	11:35
Pitot Cp	1.01

Barometric pressure	101.0	kPa
Duct static pressure	0.01	kPa
Stack Area	0.031	m²

Stack Diameter (circular)	0.20	n

Traverse	Traverse	Depth	ΔΡ	T	Angle	velocity	Traverse	Depth	ΔΡ	Т	Angle	velocity
Point	Line	cm	mmH ₂ O	°C	0	m/s	Line	cm	mmH ₂ O	°C	0	m/s
1	Α						В					
2	Α						В					
3	Α						В					
4	Α						В					
5	Α	5.0	1.1	53	<15	4.6	В					
6	Α	7.1	1.1	53	<15	4.6	В					
7	Α	12.9	1.2	53	<15	4.8	В					
8	Α	15.0	1.0	53	<15	4.3	В					
9	Α						В					
10	Α						В					
11	Α						В					
12	Α						В					

Average Pitot DP	1.12	mmH ₂ O
Average Temperature	326.2	К
Average Velocity	4.6	m/s
Average volumetric flow rate	0.14	m ³ /s at stack conditions
Average volumetric flow rate	0.12	m ³ /s (wet STP)

Sampling plane requirements Re: BS EN 13284-1:2001 5.2

a Angel of gas flow less than 15° with regard to duct axis			YES	
b	No local negative flow		YES	
c Minimum pitot greater than 5Pa				
d	Ratio of highest to lowest local gas velocity less than 3:1			
	Minimum local gas velocity	4.3		
Maximum local gas velocity 4.8				
Ratio of highest to lowest local gas velocity 1.10				

Visit 1 of 2015

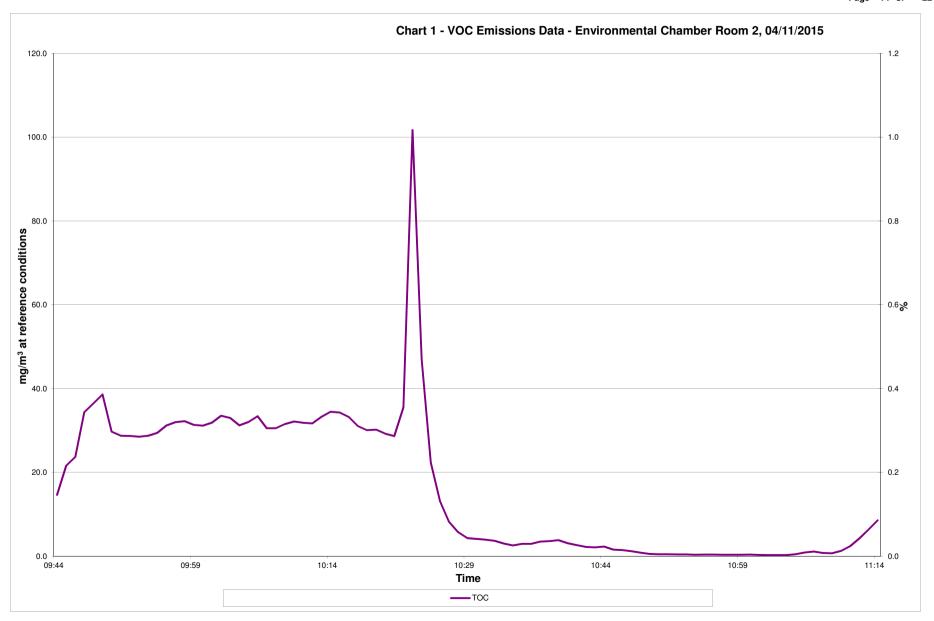
Page 13 of 22

D .	04/44/0045
Date	04/11/2015

From	09:45	to	10:15	30 minute mean		
Volatile organi	c compounds		vppm, wet	19.00	mg/m³*	30.54
From	10:15	to	10:45	30 minute mean		
Volatile organi	c compounds		vppm, wet	11.03	mg/m³*	17.72
From	10:45	to	11:15	30 minute mean		
Volatile organi	c compounds		vppm, wet	0.77	mg/m³*	1.23

Sampling Detection Limits

Volatile organic compounds	vppm	0.10	mg/m³*	0.16


Reference Gas Details

Species	Units	Value	Cylinder Reference	Analyser Range	Uncertainity $k = 2$
Nitrogen	%	99.999	VCK01959	-	± 2
Volatile organic compounds	vppm	74.7	VC59841	100	± 2

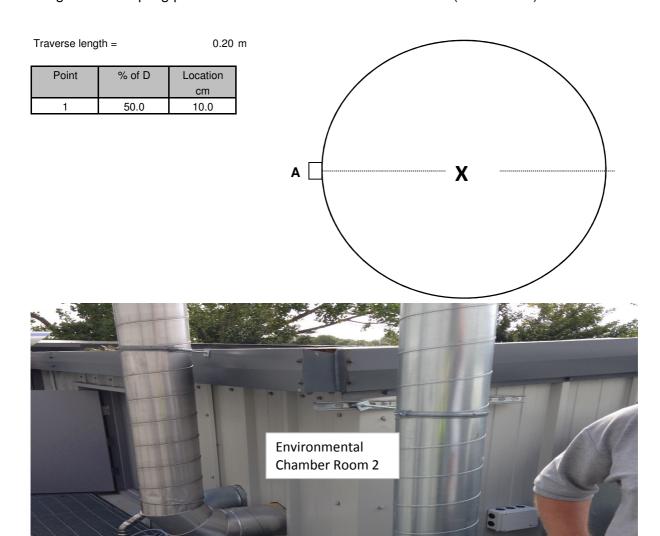
Zero And Span Gas Details

Species	units	Initial Time	08:54	Final Time	17:55
		Initial Zero	Initial Span	Final Zero	Final Span
Volatile organic compounds	vppm	0.00	74.70	0.12	75.08

Exhaust Gas Continuous Analysis Data

Linx Printing Technologies Limited, St Ives, Permit No: B18/14, R/15-6357, v1 $\,$

Visit 1 of 2015


Page 15 of 22

APPENDIX 3

Page 16 of 22

Diagram Of The Sampling Location

Diagram of sampling points across the cross section of the duct (not to scale).

Page 17 of 22

General Calculations

Stack area:

Area of a circle =
$$\frac{\pi \cdot D^2}{4}$$

D = Diameter (m) $\pi = 3.142$

Pressure conversion:

1mmH2O = 0.00980665 kPa 1mmH2O = 9.80665 Pa 1 mar = 0.1 kPa

Water vapour concentration:

From reference calculations (taken from BS EN 14790):

$$V_{WC(\%)} = \frac{\frac{M_{WC}.V_{mol(std)}}{M_W}}{\frac{M_{WC}.V_{mol(std)}}{M_W} + V_{m(std)}} \times 100$$

VWC (%) = Water vapour content on wet basis, in volume % (m³ of water vapour in m³ of wet gas)

Vm(std) = Dry gas volume measured, corrected to standard conditions (m³)

mWC = Mass of water collected in the impingers (g)

Mw = Molecular weight of water, 18.01534 rounded to 18 (g/mol)

Vmol(std) = Molar volume of water at standard conditions = 0.0224 (m3/mol)

Gas meter volume at standard conditions (STP)

From reference calculations (taken from BS EN 14790):

$$V_{m(std)} = y_d \times (V_2 - V_1) \times \frac{T_{std}}{T_m} \times \frac{p_m}{p_{std}}$$

Vm(std) = Dry gas meter volume at standard conditions (m³)

yd = Gas meter calibration coefficient

(V2-V1) = Dry gas meter volume at actual conditions (m³)

Tm = Actual Temperature (K)
Tstd = Standard temperature (273 K)

pm = Absolute pressure at the gas meter (kPa) pstd = Standard gas pressure (101.3 kPa)

Isokenetic Ratio (%):

From reference calculations (taken from EA TGN M2):

$$IsokineticRatio(\%) = \frac{Velocity\ at\ the\ sampling\ nozzle}{Velocity\ of\ the\ stack\ gas} \times 100$$

Estimating Measurment Uncertainty

Uncertainty estimates are calculated using the general rule of uncertainty propagation. Guidance is taken from publications including UKAS document M3003 and ISO 20988:2007.

Flow Calculations

Velocity:

From reference calculations (taken from ISO 10780):

$$\overline{v} = KC \sqrt{\frac{T_s \Delta \overline{p}}{p_e M_s}}$$

 \overline{v} = Average velocity (m/s)

C = velocity calculation constant = 129

Ts = Average stack temperature (K)

Ms = Molar mass of gas; assume 29 kg/kmol unless the molar mass is < 27 kg/kmol or > 31 g/kmol

K = Pitot calibration coefficientPe = Absolute gas pressure (kPa)

 $\Delta p = \Delta p$ Average pitot tube pressure differencial (kPa)

Volume flow rate

From reference calculations (taken from ISO 10780):

$$q_{va} = vA$$

qva = Average flow rate (m³/s)

v = v Average velocity (m/s)

A =Stack cross-sectional area (m²)

Volume flow rate corrected for moisture

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{(100 - H_a)}{(100 - H_m)}$$

qm =Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s) Ha = Moisture at actual conditions (%volume)

Hm = Reference moisture (%volume)

Volume flow rate corrected for temperature and pressure

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{\left(T_m p_a\right)}{\left(T_a p_m\right)}$$

qm =Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s)

Ta = Temperature at actual conditions (K)

Tm = Reference Temperatue (K)

pa = Absolute gas pressure at actual conditions (kPa)

pm =Reference pressure (kPa)

Volume flow rate corrected for oxygen

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{\left(20.9 - O_{2,ref}\right)}{\left(20.9 - O_{2,m}\right)}$$

qm =Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s)

O2,m = Actual oxygen concentration (%)

O2,ref = Reference oxygen concentration (%)

Page 19 of 22

Concentration Calculations

Concentration:

From reference calculations (taken from BS EN 13284-1):

$$c = \frac{m}{V}$$

c = Concentration m = Mass of substane V = Volume sampled

Mass Emission

Mass emission= $c \times q_m$

c = Concentration q = Volume flow rate

Concentration corrected for oxygen:

From reference calculations (taken from BS ISO 9096):

$$c_m = c_a \times \frac{20.9 - O_{2,ref}}{20.9 - O_{2,a}}$$

cm = Concentration at reference conditions

ca = Actual concentration
O2, ref = Reference oxygen (%)
O2, a= Actual Oxygen (%)

Concentration corrected for moisture:

From reference calculations (taken from BS ISO 9096):

Convert wet gas to dry gas

$$c_{dry} = c_{wet} \times \frac{100}{100 - H_a}$$

Convert dry gas to wet gas

$$c_{wet} = c_{dry} \times \frac{100 - H_a}{100}$$

cwet = Concentration wet gascdry = Concentration dry gasHa = Water vapour content (%vol)

Conversion of parts per million (ppm) to mg/m³

From reference calculations (taken from EA TGN M2):

$$Concentration(mg/m^3) = \frac{Concentration(ppm) \times molecular\ weight(g)}{molar\ volume(l)\ at\ a\ given\ temperature}$$

molar volume at 273K = 22.4 litres

When Converting TOC

$$Concentration(mg/m^3) = \frac{Concentration(ppm) \times molecular\ weight of\ carbonin\ span\ gas(g)}{molar\ volume(l)\ at\ a\ given\ temperature}$$

Calculation of Uncertainty Estimates - Instrumental Monitoring Techniques

Model equation

 $C_{ppm} = C_{reading} + Corr_{fit} + Corr_{f,dr} + Corr_{s,dr} + Corr_{rep} + Corr_{adj} + \sum_{i=1}^{p} Corr_{inf} + Corr_{inf}$

Corr_{rep} Corr_{adj} Corr_{inf} correction of repeatability of measurement $C_{,ppm}$ concentration in ppm concentration given by analyser C_{NO.reading} correction of adjustment Corr fit correction of lack of fit correction of influence quantities

Corr _{0,dr} correction of zero drift Corr s,dr correction of span drift

Calculation of partial uncertainties

u(Corr_{fit}) $\left(\frac{X_{fit,\max}}{100 \times range}\right)$

Where: $X_{\text{fit,max}}$

is the maximum allowable deviation from linearity

Expressed as % of the range and calculated by applying a rectangular probability distribution

$$u(\mathsf{Corr}_{0,\mathsf{dr}}) \qquad \qquad = \qquad \frac{X_{0,\mathit{dr}}}{\sqrt{3}} \qquad \qquad u(\mathsf{Corr}_{\mathsf{s},\mathsf{dr}}) \qquad \qquad = \qquad \frac{X_{\mathit{s},\mathit{dr}}}{\sqrt{3}}$$

max (S_{0,rep}; S_{srep}) u(Corr_{rep}) Where:

is the standard uncertainty at zero level is the standard uncertainty at span level

$$u(\text{Corr}_{\text{ad}}) \hspace{0.5cm} = \hspace{0.5cm} u(\text{Corr}_{\text{loss}}) + u(\text{Corr}_{\text{cal}}) \hspace{0.5cm} \text{Where:} \\ \hspace{0.5cm} u(\text{Corr}_{\text{loss}}) \hspace{0.5cm} u(\text{Corr}_{\text{loss}}) \hspace{0.5cm} \text{is the uncertainty due to losses in sample line} \\ \hspace{0.5cm} u(\text{Corr}_{\text{cal}}) \hspace{0.5cm} u(\text{Corr}_{\text{cal}}) \hspace{0.5cm} \text{is the uncertainty due to losses in sample line} \\ \hspace{0.5cm} cj_{\text{loss}} \hspace{0.5cm} cj_{\text{loss}} \hspace{0.5cm} \text{is the concentration of sample loss at span level} \\ \hspace{0.5cm} u(\text{Corr}_{\text{cal}}) \hspace{0.5cm} u(\text{Corr}_{\text{cal}}) \hspace{0.5cm} \text{is the concentration of sample loss at span level} \\ \hspace{0.5cm} u(\text{Corr}_{\text{loss}}) \hspace{0.5cm} u(\text{Corr}_{\text{cal}}) \hspace{0.5cm} \text{is the concentration of sample loss at span level} \\ \hspace{0.5cm} u(\text{Corr}_{\text{loss}}) \hspace{0.5cm} u(\text{Corr}_{\text{loss}}) \hspace{0.5cm} \text{is the concentration of sample loss at span level} \\ \hspace{0.5cm} u(\text{Corr}_{\text{loss}}) \hspace{0.5cm} u(\text{Corr}_{\text{loss}}) \hspace{0.5cm} \text{is the concentration of sample loss at span level} \\ \hspace{0.5cm} u(\text{Corr}_{\text{loss}}) \hspace{0.5cm} u(\text{Corr}_{\text{loss}}) \hspace{0.5cm} \text{is the concentration of sample loss at span level} \\ \hspace{0.5cm} u(\text{Corr}_{\text{loss}}) \hspace{0.5cm} u(\text{Corr}_{\text{loss}}) \hspace{0.5cm} \text{is the concentration of sample loss at span level} \\ \hspace{0.5cm} u(\text{Corr}_{\text{loss}}) \hspace{0.5cm} u(\text{Corr}_{\text{loss}}) \hspace{0.5cm} \text{is the concentration of sample loss at span level} \\ \hspace{0.5cm} u(\text{Corr}_{\text{loss}}) \hspace{0.5$$

$$u(Corr_{cal}) = \frac{U_{cal}}{2}$$
 is the expanded uncertainty of the calibration gas
$$\frac{U_{cal}}{2}$$

$$u(Corr_{inf}) = c_{j} \sqrt{\frac{(x_{j,\max} - x_{j,adj})^{2} + (x_{j,\min} - x_{j,adj}) \times (x_{j,\max} - x_{j,adj}) + (x_{j,\min} - x_{j,adj})^{2}}{3}}$$

is the sensitivity coefficient of the influence quantity is the minimum value of the influence quantity during monitoring is the maximum value of the influence quantity during monitoring is the value of the influence quantity during adjustment

$$u(Corr_{int}) = \frac{c_j}{Int_{j,test}} \sqrt{\frac{Int_{j,max}^2 + Int_{j,min} \times Int_{j,max} + Int_{j,min}^2}{3}}$$

is the sensitivity coefficient of the interferent i

 c_{j} Int_{j,test} $= \max \left[S_{Int,p}; S_{Int,n} \right]$ $u(\Sigma Corr_{int})$ is the concentration of the interferent j used to determine c is the minimum value of the interferent j quantity during monitoring is the maximum value of the interferent i quantity during monitoring

 $\mathsf{Int}_{\mathsf{j},\mathsf{adj}}$ is the concentration of the interferent j in the cal gas used to adjust the analyse

 $S_{int,p}$ is the sum of interferents with positive impact is the sum of interferents with negative impact

Combined uncertainty

 $u(C_{,ppm})$

$$\sqrt{u^2(corr_{\mathit{fit}}) + u^2(corr_{\mathit{0,dr}}) + u^2(corr_{\mathit{s,dr}}) + u^2(corr_{\mathit{rep}}) + u^2(corr_{\mathit{rep}}) + u^2(corr_{\mathit{s,vf}}) + u^2(corr_{\mathit{a,press}}) + u^2(corr_{\mathit{emp}}) + u^2(corr_{\mathit{volt}}) + u^2(corr_{\mathit{adj}}) + S_{\mathit{ht}}^{-2}}$$

Overall expanded uncertainty (k = 2)

$$U(C_m) = u(C_m) \times k$$

Uncertainty of NOx measurements

C_{NOx} is the concentration of NOx measured by the analyser is the ratio of NO:Nox in the stack gas

is the NOx converter efficiency

Combined uncertainty NOx measurements

$$\sqrt{u^{2}(corr_{fit}) + u^{2}(corr_{0,dr}) + u^{2}(corr_{s,dr}) + u^{2}(corr_{rep}) + u^{2}(corr_{rep}) + u^{2}(corr_{s,vf}) + u^{2}(corr_{a,press}) + u^{2}(corr_{temp}) + u^{2}(corr_{volt}) + u^{2}(corr_{adj}) + S_{lnt}^{2} + u^{2}(corr_{NOx,comv}) + u^{2}(corr_{temp}) + u^{2}(cor$$

Uncertainty of mass concentration at oxygen reference concentration

u(C, O2 ref)

$$\sqrt{u^2(corr_{fit}) + u^2(corr_{o,dr}) + u^2(corr_{s,dr}) + u^2(corr_{rep}) + u^2(corr_{s,vf}) + u^2(corr_{s,vf}) + u^2(corr_{s,ves}) + u^2(corr_{temp}) + u^2(corr_{temp}) + u^2(corr_{odt}) +$$

u(C,O_{2,ref)} uncertainty associated with the mass concentration at O₂ ref. concentration mg/m³ C,O_{2,ref} mg/m³ mass concentration at O₂ reference concentration O2 measured concentration % volume uncertainty associated to the measured O2 concentration % (relative to O_{2 meas}) Linx Printing Technologies Limited, St Ives, Permit No: B18/14, R/15-6357, v1

Visit 1 of 2015

Page 21 of 22

APPENDIX 4

Uncertainty Estimate For The Measurement Of Total Organic Carbon

Analyser Type/Model		Maihak 0	(0 - No co:::-	otion)	
Reference Oxygen %	L	U	(0 = No corre	Guorij	
		Test 1	Test 2	Test 3	
imit value	mg/m ³	75	75	75	
Limit value Measured concentration	ppm	46.7 19.0	46.7 11.0	46.7 0.8	
Measured concentration	ppm mg/m ³	30.5	17.7	1.2	
Concentration at O ₂ ref. concentration	mg/m ³	N/A	N/A	N/A	
2	ing/iii				
Calibration gas	ppm	74.7	74.7	74.7	
Calibration gas	mg/m ³	120.1	120.1	120.1	
Analyser range	ppm	9.3	9.3	9.3	
Analyser range	mg/m ³	15.0	15.0	15.0	
Correction of Lack of Fit					
Lack of fit	% range	2.0	2.0	2.0	
	u(Corr, _{fit})	0.11	0.11	0.11	
Corrections of Zero and Span Drift				assumed to be	e < 5% u(
Zero Drift	% range	0.00	0.00	0.00	
Span Drift	u(Corr, _{0dr}) % range	0.00	0.00	0.00	
эран Биіт	u(Corr, _{sdr})	0.00	0.00	0.00	
	u(OOH,sdr)	0.00	0.00	0.00	
Correction of Repeatability of Measurement					
Repeatability SD at span level	% range	0.0	0.0	0.0	
Not reported)	u(Corr, _{rep})	0.00	0.00	0.00	
Correction of adjustment	0/	0.07	0.07	0.07	
osses in the line	% range u(Corr, _{loss})	0.27	0.27 0.02	0.27 0.00	
Incertainty of calibration gas	% range	2.0	2.0	2.0	
Shoomanny or cambration gas	u(Corr, _{cal})	0.19	0.11	0.01	
	- (/Ga)/				
Correction of Influence of Interferents					
N ₂ O	% range				
	u(Corr, _{N2O})	0.00	0.00	0.00	
CO ₂	% range	0.00	0.00	2.22	
CH₄	u(Corr, _{CO2}) % range	0.00	0.00	0.00	
5F14	u(Corr, _{CH4})	0.00	0.00	0.00	
Total of interferent influences	% range	2.50	2.50	2.50	
$u(\Sigma Corrint) = \max_{S_{Int,p}; S_{Int,n}} [S_{Int,p}; S_{Int,n}]$	$u(\Sigma Corr_{int})$	0.16	0.16	0.16	
Correction of Influence Quantities					
Sensitivity to sample volume flow	% range	1.60	1.60	1.60	
	u(Corr, _{flow})	0.09	0.09	0.09	
Sensitivity to atmospheric pressure	% range	0.00	0.00	0.00	
Not reported) Sensitivity to ambient temperature	u(Corr, _{press}) % range	0.00 -2.40	0.00 -2.40	0.00 -2.40	
sensitivity to ambient temperature	u(Corr, _{temp})	-0.28	-0.28	-0.28	
Sensitivity to electrical voltage	% range	0.50	0.50	0.50	
Not reported)	u(Corr, _{volt})	0.10	0.10	0.10	
Maximum standard uncertainty	u(Corr, _{max})	0.19	0.11	0.11	
5% of maximum standard uncertainty	u(Corr, _{5%})	0.01	0.01	0.01	
nterferent Concentration Variations	Minimum	Maximum	Value at cal	Performance	Units
CH ₄ range	0	10	0	50	mg/m
I ₂ O range	0	0	0	20	mg/m
CO ₂ range	8	12	0	15	mg/m
Oxygen effect variations	Minimum	Maximum	Value at cal		Units
Oxygen effect	0	20	0	2	mg/m
nfluence Quantitiy Variations					
midence Quantity variations	Minimum	Maximum	Value at cal	Performance	Units
Sensitivity to sample volume flow	55	65	60	5	I/h
Sensitivity to atmospheric pressure	99	100	99	1	kPa
Sensitivity to ambient temperature	278	313	288	10	K
Sensitivity to electrical voltage	187	250	230	5	V
Measurement uncertainty	10.00	Test 1	Test 2	Test 3	
Combined uncertainty Combined uncertainty	ppm ma/m³	0.41	0.38 0.61	0.36 0.59	
Combined uncertainty Combined uncertainty at oxygen reference	mg/m ³ mg/m ³	0.66	0.61	0.59	
Somblined uncertainty at oxygen reference	mg/m	0.00	0.01	0.05	
Expanded uncertainty expressed with a level of	confidence of 95%. k	=2			
Overall uncertainty	ppm	0.8	0.8	0.7	
Overall uncertainty	mg/m ³	1.3	1.2	1.2	
Overall uncertainty relative to measured value	%	4.3	6.9	95.3	
	%	8.8	8.2	7.8	
Overall uncertainty relative to range Overall uncertainty relative to ELV	%	1.1	1.0	1.0	

The uncertainty evaluation has been carried out in accordance with UKAS requirements.

Page 1 of 22

Client Linx Printing Technologies Limited

Linx House

8 Stocks Bridge Way

St Ives

Cambridgeshire

PE27 5JL

Part 1: Executive Summary

Report for the Periodic Monitoring of Emissions to Air.

Site St Ives

Plant Fume Cupboard Extract Vent

Sampling Date 4th November 2015 Report Date 2nd December 2015

Job Number EM-2112 Permit Number B18/14

Report Prepared by: Print Harpreet Badwal

MCERTS No. MM03 149 Level 2 TE: 1,2,3,4

Report Approved by: Sign

Print Derek Myers

MCERTS No. MM02 115 Level 2 TE: 1,2,3,4

REC Ltd Environmental Monitoring

Unit 19 Bordesley Green Trading Estate Bordesley Green Road Birmingham B8 1BZ

Tel: 0845 676 9303 Company Registration No 03133832

Contents

Page 1	Part 1: Executive Summary
Page 2	Contents
Page 3	Monitoring Objectives
Page 3	Special Monitoring Requirements
Page 3	Summary Of Methods
Page 4	Summary Of Results
Page 5	Summary Of Results, Exhaust Gases
Page 6	Operating Information
Page 6	Comments On Monitoring Procedures
Page 7	Part 2: Supporting Information
Page 8	Appendix 1
Page 9	Emission Monitoring Procedures and Instrumentation
Page 10	Sampling Personnel
Page 10	Equipment References
Page 11	Appendix 2
Page 12	Preliminary Velocity Traverse Data
Page 13	Exhaust Gases - Continuous Analysis Data
Page 14	Chart 1 - VOC Emissions Data
Page 15	Appendix 3
Page 16	Diagram of Sampling Location
Page 17	Generic Calculations
Page 18	Flow Calculations
Page 19	Concentration Calculation
Page 20	Uncertainty Estimate Calculations - Instrumental Techniques
Page 21	Appendix 4
Page 22	Uncertainty Estimates:- TOC

Visit 1 of 2015

Page 3 of 22

Monitoring Objectives

The monitoring was undertaken to check compliance with authorised emission limits.

All monitoring procedures were carried out to the MCERTS requirements under the REC Environmental Monitoring quality system to ISO 17025: 2005.

Monitoring was undertaken for the listed emissions from the following sampling positions:

Sampling Location	Emission
Fume Cupboard Extract Vent	Total organic carbon

Special Monitoring Requirements

There were no special requirements for this monitoring campaign.

Summary of Methods

Emission	Method number	Method standard
Gas velocity and volume flow	TPM/01A	BS EN ISO 16911-1:2013
тос	TPM/13	BS EN 12619 : 2013

Page 4 of 22

Summary Of Results

The table presents the atmospheric emissions from the tests undertaken on behalf of Linx Printing Technologies Limited The results were measured from the sample positions downstream of the arrestment plant.

Emission at	Sampling			Emission	Authorised	Uncertainty	Detection	Mass
St Ives	Time			Result	Limit	+/-	Limit	Emission
Fume Cupboard Extract Vent	nt Date Start		End	mg/m³*	mg/m³*	mg/m³*	mg/m³∗	g/h
тос	04/11/15	11:20	12:50	2.3	75	1.2	0.2	2.9

* at reference conditions	Stack Gas Weight	0 °C	Without correction for moisture		
	29.00 Kg/kmol	101.3 kPa	Oxygen No Correction	%	

Where applicable Oxides of nitrogen results are expressed as nitrogen dioxide

TOC results are expressed as total carbon

Throughout Report: * Reference conditions (see above)

** Analysis not required #- UKAS accredited only
ND Non detectable ##- Not Accredited
s - Subcontracted laboratory analysis N/A Not applicable

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a 95% confidence level. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

All tests included in this report are accredited under UKAS and MCERTS accreditation schemes unless otherwise stated.

Opinions and interpretations expressed herein are outside the scope of MCERTS and UKAS accreditation.

Nm³ 273 K, 101.3 kPa

Page 5 of 22

Summary Of Results, Exhaust Gases

The table presents the atmospheric emissions from the tests undertaken on behalf of **Linx Printing Technologies Limited**The results were measured from the sample positions downstream of the arrestment plant.

_	sion at Ives	Sampling Time			Emission Result	Authorised Limit	Uncertainty +/-	Detection Limit	Mass Emission
Fume Cupboard Extract Vent		Date	Start	End	mg/m ³ *	mg/m ³ *	mg/m³*	mg/m³*	g/h
TOC	Test 1	04/11/15	11:20	11:50	6.0	75	1.2	0.2	7.7
тос	Test 2	04/11/15	11:50	12:20	0.3	75	1.2	0.2	0.4
тос	Test 3	04/11/15	12:20	12:50	0.5	75	1.2	0.2	0.6

* at ref	Stack Gas Weight	0 °C	Without correction for moisture
Conditions	29.00 Kg/kmol	101.3 kPa	Oxygen No Correction %

Where applicable Oxides of nitrogen results are expressed as nitrogen dioxide

TOC results are expressed as total carbon

Throughout Report: * Reference conditions (see above)

** Analysis not required #- UKAS accredited only
ND Non detectable ##- Not Accredited
s - Subcontracted laboratory analysis N/A Not applicable

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a 95% confidence level. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

All tests included in this report are accredited under UKAS and MCERTS accreditation schemes unless otherwise stated. Opinions and interpretations expressed herein are outside the scope of MCERTS and UKAS accreditation.

Nm³ 273 K, 101.3 kPa

Page 6 of 22

Operating Information

The table below shows details of the operating information on each sampling date for: Fume Cupboard Extract Vent

Date	Process type	Process duration	Fuel	Feedstock	Abatement	Load
04/11/2015	Laboratory Fume Cupboard	Continuous	N/A	Methyl Ethyl Ketone, Acetone & Ethanol	None	Normal Operation

There are no CEM's available on this process.

Comments & Monitoring Deviations

A waste gas homogeneity test to BS EN 15259:2007 (MID) is not required:-

The homogeneity test is not applicable to non-combustion processes.

The homogeneity test is not applicable to duct areas less than 1m².

All monitoring was performed in accordance with the relevant procedures.

The sampling location is a vertical duct.

Only one sample port was available on the vertical duct.

The velocity and temperature profile at the sampling location met the requirements of BS EN 13284-1: 2002.

When the results are expressed as non-detected the mass emissions are calculated from the detection limit and therefore they are worst case results.

Page 7 of 22

Part 2: Supporting Information

Report for the Periodic Monitoring of Emissions to Air.

Client Linx Printing Technologies Limited

Site St Ives

Plant Fume Cupboard Extract Vent

Sampling Date 4th November 2015 Report Date 2nd December 2015

Job Number EM-2112 Permit Number B18/14

Report Prepared by: Print Harpreet Badwal

MCERTS No. MM03 149 Level 2 TE: 1,2,3,4

Report Approved by: Sign

Print Derek Myers

MCERTS No. MM02 115 Level 2 TE: 1,2,3,4

REC Ltd Environmental Monitoring

Unit 19 Bordesley Green Trading Estate Bordesley Green Road Birmingham B8 1BZ

Tel: 0845 676 9303

Company Registration No 03133832

Linx Printing Technologies Limited, St Ives, Permit No: B18/14, R/15-6358, v1

Visit 1 of 2015

Page 8 of 22

APPENDIX 1

Page 9 of 22

Emission Monitoring Procedures And Instrumentation

Gas velocity and temperature

Documented in-house procedure TPM01/A to the main procedural requirements of BS EN ISO 16911-1:2013 Velocity and temperature measurements are performed using a calibrated Pitot tube, a calibrated pressure differential reading device and a calibrated thermocouple. Velocity and possible flow deviation measurements are carried out at selected, representative points in the gas stream.

Total organic carbon

Documented in-house procedure TPM/13 to the main procedural requirements of BS EN 12619:2013. Continuous analysis using probe, sample line and multi range Flame Ionisation Detector (FID) analyser. The analyser is calibrated before and during the tests using certified gas mixtures of nitrogen, oxygen and propane. Sampling points are selected in accordance with the findings of any BS EN 15259 assessment.

Sampling Project Personnel Competency And Expiry Dates

Report prepared by:	Harpreet Badwal	MCERTS No MM03 149	Level 1	Level 2 30/09/2018	TE1 30/09/2018	TE2 30/04/2019	TE3 31/10/2019	TE4 31/10/2019
Report authorised by:	Derek Myers	MM02 115	-	30/09/2017	31/05/2018	30/11/2018	30/11/2018	30/11/2018
Team leader:	Harpreet Badwal	MM03 149	-	30/09/2018	30/09/2018	30/04/2019	31/10/2019	31/10/2019
Team leader:	Aidan Wrynne	MM08 921	_	31/05/2017	31/05/2017	31/11/2018	30/11/2017	30/06/2018

Equipment References

Equipment	Reference Number
FID	AQ271
Heated Line	HL40
Heated Filter	Sintered
Stack Thermocouple	PTTS97
Timer / Stopwatch	ST41
Barometer	WS03
Pitot	PT129
Thermometer	TK28
Manometer	PI03

Linx Printing Technologies Limited, St Ives, Permit No: B18/14, R/15-6358, v1

Visit 1 of 2015

Page 11 of 22

APPENDIX 2

Page 12 of 22

Date	04/11/2015
Time	09:32
Pitot Cp	1.01

Barometric pressure	101.0	kPa
Duct static pressure	0.06	kPa
Stack Area	0.031	m²

Stack Diameter (circular)	0.20	m
		_

Traverse	Traverse	Depth	ΔΡ	T	Angle	velocity	Traverse	Depth	ΔΡ	T	Angle	velocity
Point	Line	cm	mmH ₂ O	°C	0	m/s	Line	cm	mmH ₂ O	°C	0	m/s
1	Α						В					
2	Α						В					
3	Α						В					
4	Α						В					
5	Α	5.0	7.8	21	<15	11.5	В					
6	Α	7.1	8.4	21	<15	11.8	В					
7	Α	12.9	9.3	22	<15	12.5	В					
8	Α	15.0	9.8	22	<15	12.8	В					
9	Α						В					
10	Α						В					
11	Α						В					
12	Α						В					

Average Pitot DP	8.80	mmH ₂ O
Average Temperature	294.7	К
Average Velocity	12.1	m/s
Average volumetric flow rate	0.38	m ³ /s at stack conditions
Average volumetric flow rate	0.35	m ³ /s (wet STP)

Sampling plane requirements Re: BS EN 13284-1:2001 5.2

a Angel of gas flow less than 15° with regard to duct axis			YES
b No local negative flow			YES
c Minimum pitot greater than 5Pa			
d	Ratio of highest to lowest local gas velocity less than 3:1		
	Minimum local gas velocity	11.5	
	Maximum local gas velocity	12.8	
	Ratio of highest to lowest local gas velocity	1.12	

Visit 1 of 2015

Page 13 of 22

± 2

10

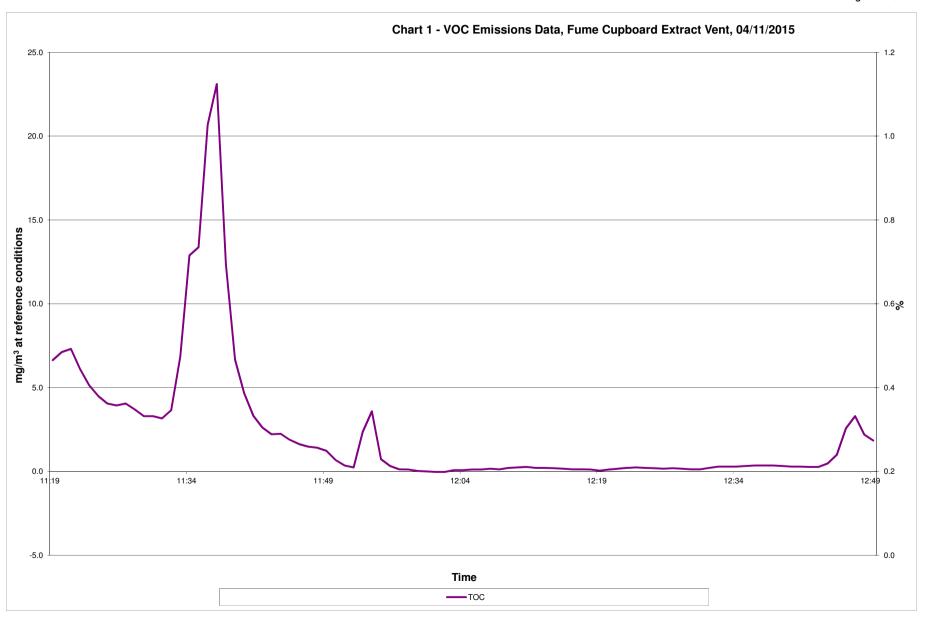
Date	04/11/2015

From	11:20	to	11:50	30 minute mean			
Volatile organ	nic compounds		vppm, wet	3.76	mg/m³*	6.	05
From	11:50	to	12:20	30 minute mean			
	nic compounds		vppm, wet	0.21	mg/m³*	0.	34
From	12:20	to	12:50	30 minute mean			
Volatile orgar	nic compounds		vppm, wet	0.30	mg/m³*	0.48	
Sampling De	tection Limits						
	ling Detection Limits le organic compounds vppm 0.10 mg/m³*		0	0.16			
Volatile organ	no compounds		νррііі	0.10	mg/m	0.	10
Reference G	as Details						
Species			Units	Value	Cylinder	Analyser	Uncertainity
					Reference	Range	k = 2
Nitrogon			0/.	00 000	VCK01050	_	+ 2

Zero And Span Gas Details

Volatile organic compounds

Species	units	Initial Time	08:54	Final Time	17:55
		Initial Zero	Initial Span	Final Zero	Final Span
Volatile organic compounds	vppm	0.00	74.70	0.12	75.08


74.7

VC59841

vppm

Exhaust Gas Continuous Analysis Data

Linx Printing Technologies Limited, St Ives, Permit No: B18/14, R/15-6358, v1

Visit 1 of 2015

Page 15 of 22

APPENDIX 3

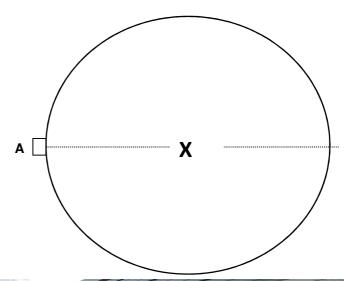

Diagram Of The Sampling Location

Diagram of sampling points across the cross section of the duct (not to scale).

Traverse length =

0.20 m

Point	% of D	Location
		cm
1	50.0	10.0

General Calculations

Stack area:

Area of a circle =
$$\frac{\pi . D^2}{4}$$

D = Diameter (m) $\pi = 3.142$

Pressure conversion:

1mmH2O = 0.00980665 kPa 1mmH2O = 9.80665 Pa 1 mar = 0.1 kPa

Water vapour concentration:

From reference calculations (taken from BS EN 14790):

$$V_{WC(\%)} = \frac{\frac{M_{WC}.V_{mol(std)}}{M_W}}{\frac{M_{WC}.V_{mol(std)}}{M_W} + V_{m(std)}} \times 100$$

VWC (%) = Water vapour content on wet basis, in volume % (m³ of water vapour in m³ of wet gas)

Vm(std) = Dry gas volume measured, corrected to standard conditions (m³)

mWC = Mass of water collected in the impingers (g)

Mw = Molecular weight of water, 18.01534 rounded to 18 (g/mol)

Vmol(std) = Molar volume of water at standard conditions = 0.0224 (m3/mol)

Gas meter volume at standard conditions (STP)

From reference calculations (taken from BS EN 14790):

$$V_{m(std)} = y_d \times (V_2 - V_1) \times \frac{T_{std}}{T_m} \times \frac{p_m}{p_{std}}$$

Vm(std) = Dry gas meter volume at standard conditions (m³)

yd = Gas meter calibration coefficient

(V2-V1) = Dry gas meter volume at actual conditions (m³)

Tm = Actual Temperature (K)
Tstd = Standard temperature (273 K)

pm = Absolute pressure at the gas meter (kPa) pstd = Standard gas pressure (101.3 kPa)

Isokenetic Ratio (%):

From reference calculations (taken from EA TGN M2):

$$IsokineticRatio(\%) = \frac{Velocity\ at\ the\ sampling\ nozzle}{Velocity\ of\ the\ stack\ gas} \times 100$$

Estimating Measurment Uncertainty

Uncertainty estimates are calculated using the general rule of uncertainty propagation. Guidance is taken from publications including UKAS document M3003 and ISO 20988:2007.

Flow Calculations

Velocity:

From reference calculations (taken from ISO 10780):

$$\overline{v} = KC \sqrt{\frac{T_s \Delta \overline{p}}{p_e M_s}}$$

 \overline{v} = Average velocity (m/s)

C = velocity calculation constant = 129

Ts = Average stack temperature (K)

Ms = Molar mass of gas; assume 29 kg/kmol unless the molar mass is < 27 kg/kmol or > 31 g/kmol

K = Pitot calibration coefficientPe = Absolute gas pressure (kPa)

 $\Delta p = \Delta p$ Average pitot tube pressure differencial (kPa)

Volume flow rate

From reference calculations (taken from ISO 10780):

$$q_{va} = vA$$

qva = Average flow rate (m³/s)

 \bar{v} = Average velocity (m/s)

A =Stack cross-sectional area (m²)

Volume flow rate corrected for moisture

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{(100 - H_a)}{(100 - H_m)}$$

qm =Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s) Ha = Moisture at actual conditions (%volume)

Hm = Reference moisture (%volume)

Volume flow rate corrected for temperature and pressure

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{\left(T_m p_a\right)}{\left(T_a p_m\right)}$$

qm =Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s)

Ta = Temperature at actual conditions (K)

Tm = Reference Temperatue (K)

pa = Absolute gas pressure at actual conditions (kPa)

pm = Reference pressure (kPa)

Volume flow rate corrected for oxygen

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{\left(20.9 - O_{2,ref}\right)}{\left(20.9 - O_{2,m}\right)}$$

qm =Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s)

O2,m = Actual oxygen concentration (%)

O2,ref = Reference oxygen concentration (%)

Page 19 of 22

Concentration Calculations

Concentration:

From reference calculations (taken from BS EN 13284-1):

$$c = \frac{m}{V}$$

c = Concentration m = Mass of substane V = Volume sampled

Mass Emission

Mass emission= $c \times q_m$

c = Concentration q = Volume flow rate

Concentration corrected for oxygen:

From reference calculations (taken from BS ISO 9096):

$$c_m = c_a \times \frac{20.9 - O_{2,ref}}{20.9 - O_{2,a}}$$

cm = Concentration at reference conditions

ca = Actual concentration
O2, ref = Reference oxygen (%)
O2, a= Actual Oxygen (%)

Concentration corrected for moisture:

From reference calculations (taken from BS ISO 9096):

Convert wet gas to dry gas

$$c_{dry} = c_{wet} \times \frac{100}{100 - H_a}$$

Convert dry gas to wet gas

$$c_{wet} = c_{dry} \times \frac{100 - H_a}{100}$$

cwet = Concentration wet gascdry = Concentration dry gasHa = Water vapour content (%vol)

Conversion of parts per million (ppm) to mg/m³

From reference calculations (taken from EA TGN M2):

$$Concentration(mg/m^3) = \frac{Concentration(ppm) \times molecular\ weight(g)}{molar\ volume(l)\ at\ a\ given\ temperature}$$

molar volume at 273K = 22.4 litres

When Converting TOC

$$Concentration(mg/m^3) = \frac{Concentration(ppm) \times molecular\ weight of\ carbonin\ span\ gas(g)}{molar\ volume(l)\ at\ a\ given\ temperature}$$

Calculation of Uncertainty Estimates - Instrumental Monitoring Techniques

Model equation

 $C_{ppm} = C_{reading} + Corr_{fit} + Corr_{f,dr} + Corr_{s,dr} + Corr_{rep} + Corr_{adj} + \sum_{i=1}^{p} Corr_{inf} + Corr_{inf}$

correction of repeatability of measurement $C_{,ppm}$ concentration in ppm

Corr_{rep} Corr_{adj} Corr_{inf} concentration given by analyser C_{NO.reading} correction of adjustment Corr fit correction of lack of fit correction of influence quantities Corr _{0,dr} correction of zero drift

Corr s,dr correction of span drift

Calculation of partial uncertainties

u(Corr_{fit}) $\left(\frac{X_{fit,\max}}{100 \times range}\right)$ Where: $X_{\text{fit,max}}$ is the maximum allowable deviation from linearity

Expressed as % of the range and calculated by applying a rectangular probability distribution

u(Corr_{0.dr})

max (S_{0,rep}; S_{srep}) u(Corr_{rep}) Where:

is the standard uncertainty at zero level is the standard uncertainty at span level

u(Corr_{adj}) $u(Corr_{loss}) + u(Corr_{cal})$

 $u(Corr_{loss})$ is the uncertainty due to losses in sample line is the uncertainty due to losses in sample line is the concentration of sample loss at span level

 $u(Corr_{cal})$ is the expanded uncertainty of the calibration gas

 $= c_{j} \sqrt{\frac{(x_{j,\max} - x_{j,adj})^{2} + (x_{j,\min} - x_{j,adj}) \times (x_{j,\max} - x_{j,adj}) + (x_{j,\min} - x_{j,adj})^{2}}{3}}$ u(Corr inf)

is the sensitivity coefficient of the influence quantity

is the minimum value of the influence quantity during monitoring is the maximum value of the influence quantity during monitoring is the value of the influence quantity during adjustment

 $= \frac{c_{j}}{Int_{j,lest}} \sqrt{\frac{Int_{j,max}^{2} + Int_{j,min} \times Int_{j,max} + Int_{j,min}^{2}}{3}}$

 c_{j} Int_{j,test} is the sensitivity coefficient of the interferent i $= \max \left[S_{Int,p}; S_{Int,n} \right]$ $u(\Sigma Corr_{int})$ is the concentration of the interferent j used to determine c is the minimum value of the interferent j quantity during monitoring is the maximum value of the interferent i quantity during monitoring

 $\mathsf{Int}_{\mathsf{j},\mathsf{adj}}$ is the concentration of the interferent j in the cal gas used to adjust the analyse

 $S_{int,p}$ is the sum of interferents with positive impact is the sum of interferents with negative impact

Combined uncertainty

 $u(C_{,ppm})$

 $\sqrt{u^{2}(corr_{fit}) + u^{2}(corr_{o,dr}) + u^{2}(corr_{s,dr}) + u^{2}(corr_{ep}) + u^{2}(corr_{ep}) + u^{2}(corr_{s,vf}) + u^{2}(corr_{d,oress}) + u^{2}(corr_{ep}) + u^{2}(corr_{odi}) + S_{int}^{-2}}$

 $U(C_m) = u(C_m) \times k$ Overall expanded uncertainty (k = 2)

Uncertainty of NOx measurements

C_{NOx} is the concentration of NOx measured by the analyser is the ratio of NO:Nox in the stack gas is the NOx converter efficiency

Combined uncertainty NOx measurements

 $\sqrt{u^2(corr_{fit}) + u^2(corr_{odt}) + u^2(corr_{sdt}) + u^2(corr_{sof}) + u^2(corr$

Uncertainty of mass concentration at oxygen reference concentration

u(C, O2 ref)

 $\sqrt{u^{2}(corr_{fit}) + u^{2}(corr_{o,dr}) + u^{2}(corr_{s,dr}) + u^{2}(corr_{rep}) + u^{2}(corr_{s,sf}) + u^{2}(corr_{s,sf}) + u^{2}(corr_{semp}) + u^{2}(corr_{temp}) + u^{2}(corr_{odi}) + S_{tat}^{2}} + \left(\frac{u^{2}(O_{2,meas,dry})}{(21 - O_{s,sf})}\right) + \frac{u^{2}(corr_{semp}) + u^{2}(corr_{semp}) + u^{2}(corr_{semp}) + u^{2}(corr_{odi}) + S_{tat}^{2}}{(21 - O_{s,sf})}$

u(C,O_{2,ref)} uncertainty associated with the mass concentration at O₂ ref. concentration mg/m³ C,O_{2,ref} mg/m³ mass concentration at O₂ reference concentration O2 measured concentration % volume

uncertainty associated to the measured O2 concentration % (relative to O_{2 meas}) Linx Printing Technologies Limited, St Ives, Permit No: B18/14, R/15-6358, v1

Visit 1 of 2015

Page 21 of 22

APPENDIX 4

Uncertainty Estimate For The Measurement Of Total Organic Carbon

Analyser Type/Model		Sick Maihak 0		ction)	
Reference Oxygen %		J	(0 = No corre	Guoii)	
		Test 1	Test 2	Test 3	
imit value	mg/m ³	75	75	75	
Limit value Measured concentration	ppm	46.7 3.8	46.7 0.2	46.7 0.3	
Measured concentration	ppm mg/m ³	6.0	0.2	0.5	
Concentration at O ₂ ref. concentration	mg/m ³	N/A	N/A	N/A	
	,g			L	
Calibration gas	ppm	74.7	74.7	74.7	
Calibration gas	mg/m ³	120.1	120.1	120.1	
Analyser range	ppm	9.3	9.3	9.3	
Analyser range	mg/m ³	15.0	15.0	15.0	
Correction of Lack of Fit					
Lack of fit	% range	2.0	2.0	2.0	
	u(Corr, _{fit})	0.11	0.11	0.11	
Corrections of Zero and Span Drift				assumed to be	< 5% u(
Zero Drift	% range	0.00	0.00	0.00	
Doon Drift	u(Corr, _{Odr})	0.00	0.00	0.00	
Span Drift	% range u(Corr, _{sdr})	0.00	0.00	0.00	
	u(Oon,sdr)	0.00	0.00	0.00	
Correction of Repeatability of Measurement					
Repeatability SD at span level	% range	0.0	0.0	0.0	
Not reported)	u(Corr, _{rep})	0.00	0.00	0.00	
Correction of adjustment	0/	0.07	0.07	0.67	
osses in the line	% range u(Corr, _{loss})	0.27	0.27 0.00	0.27 0.00	
Incertainty of calibration gas	% range	2.0	2.0	2.0	
Shoertainty of calibration gas	u(Corr, _{cal})	0.04	0.00	0.00	
	e (= c · · · · · cai)				
Correction of Influence of Interferents					
N₂O	% range				
	u(Corr, _{N2O})	0.00	0.00	0.00	
CO ₂	% range				
	u(Corr, _{CO2})	0.00	0.00	0.00	
CH₄	% range u(Corr, _{CH4})	0.00	0.00	0.00	
Total of interferent influences	% range	2.50	2.50	2.50	
$u(\Sigma Corrint) = \max_{n} [S_{lnt,p}; S_{lnt,n}]$	u(ΣCorr _{int})	0.16	0.16	0.16	
	, ,,,,,				
Correction of Influence Quantities					
Sensitivity to sample volume flow	% range	1.60	1.60	1.60	
	u(Corr, _{flow})	0.09	0.09	0.09	
Sensitivity to atmospheric pressure	% range				
(Not reported)	u(Corr, _{press})	0.00	0.00	0.00	
Sensitivity to ambient temperature	% range	-2.40	-2.40	-2.40	
Sensitivity to electrical voltage	u(Corr, _{temp}) % range	-0.28 0.50	-0.28 0.50	-0.28 0.50	
Not reported)	u(Corr, _{volt})	0.10	0.10	0.10	
rect reported)	a(con,voit)	0.10	0.10	0.10	
Maximum standard uncertainty	u(Corr, _{max})	0.11	0.11	0.11	
5% of maximum standard uncertainty	u(Corr,5%)	0.01	0.01	0.01	
nterferent Concentration Variations	Minimum	Maximum	Value at act	Dorformana	I lock
nterferent Concentration Variations CH ₄ range	Minimum 0	Maximum 10	Value at cal 0	Performance 50	Units mg/m
N₂O range	0	0	0	20	mg/m
CO ₂ range	8	12	0	15	mg/m
Oxygen effect variations	Minimum	Maximum	Value at cal		Units
Dxygen effect	0	20	0	2	mg/m
nfluence Quantitiy Variations	L MAIL :	Mand	I Malua : :	D-st-ss	11.00
Consider to comple values - #	Minimum	Maximum	Value at cal	Performance	Units
Sensitivity to sample volume flow Sensitivity to atmospheric pressure	55 99	65 100	60 99	5 1	l/h kPa
Sensitivity to atmospheric pressure	278	313	288	10	KPa K
Sensitivity to electrical voltage	187	250	230	5	V
	.57				•
Measurement uncertainty		Test 1	Test 2	Test 3	
Combined uncertainty	ppm	0.37	0.36	0.36	
Combined uncertainty	mg/m ³	0.59	0.59	0.59	
Combined uncertainty at oxygen reference	mg/m ³	0.59	0.59	0.59	
Type and ad a page trainty average and with a last 1.	ofidence of OFO/	0			
Expanded uncertainty expressed with a level of cor Overall uncertainty			0.7	0.7	
	ppm	0.7	0.7 1.2	1.2	
	3				
Overall uncertainty	mg/m³	1.2 19.5			
	mg/m ³ %	1.2 19.5 7.9	344.7 7.8	246.0 7.8	

The uncertainty evaluation has been carried out in accordance with UKAS requirements.

Page 1 of 22

Client Linx Printing Technologies Limited

Linx House

8 Stocks Bridge Way

St Ives

Cambridgeshire

PE27 5JL

Part 1: Executive Summary

Report for the Periodic Monitoring of Emissions to Air.

Site St Ives Plant Labs

Sampling Date 4th November 2015 Report Date 2nd December 2015

Job Number EM-2112 Permit Number B18/14

Report Prepared by: Print Harpreet Badwal

MCERTS No. MM03 149 Level 2 TE: 1,2,3,4

Report Approved by: Sign

Print Derek Myers

MCERTS No. MM02 115 Level 2 TE: 1,2,3,4

REC Ltd Environmental Monitoring

Unit 19 Bordesley Green Trading Estate Bordesley Green Road Birmingham B8 1BZ

Tel: 0845 676 9303 Company Registration No 03133832

Contents

Page 1	Part 1: Executive Summary
Page 2	Contents
Page 3	Monitoring Objectives
Page 3	Special Monitoring Requirements
Page 3	Summary Of Methods
Page 4	Summary Of Results
Page 5	Summary Of Results, Exhaust Gases
Page 6	Operating Information
Page 6	Comments On Monitoring Procedures
Page 7	Part 2: Supporting Information
Page 8	Appendix 1
Page 9	Emission Monitoring Procedures and Instrumentation
Page 10	Sampling Personnel
Page 10	Equipment References
Page 11	Appendix 2
Page 12	Preliminary Velocity Traverse Data
Page 13	Exhaust Gases - Continuous Analysis Data
Page 14	Chart 1 - VOC Emissions Data
Page 15	Appendix 3
Page 16	Diagram of Sampling Location
Page 17	Generic Calculations
Page 18	Flow Calculations
Page 19	Concentration Calculation
Page 20	Uncertainty Estimate Calculations - Instrumental Techniques
Page 21	Appendix 4
Page 22	Uncertainty Estimates:- TOC

Visit 1 of 2015

Page 3 of 22

Monitoring Objectives

The monitoring was undertaken to check compliance with authorised emission limits.

All monitoring procedures were carried out to the MCERTS requirements under the REC Environmental Monitoring quality system to ISO 17025: 2005.

Monitoring was undertaken for the listed emissions from the following sampling positions:

Sampling Location	Emission		
Labs	Total organic carbon		

Special Monitoring Requirements

There were no special requirements for this monitoring campaign.

Summary of Methods

Emission	Method number	Method standard
Gas velocity and volume flow	TPM/01A	BS EN ISO 16911-1:2013
тос	TPM/13	BS EN 12619 : 2013

Page 4 of 22

Summary Of Results

The table presents the atmospheric emissions from the tests undertaken on behalf of Linx Printing Technologies Limited The results were measured from the sample positions downstream of the arrestment plant.

Emission at	Sampling		Emission	Authorised	Uncertainty	Detection	Mass	
St Ives	Time			Result	Limit	+/-	Limit	Emission
Labs	Date	Start	End	mg/m³∗	mg/m ³ *	mg/m³*	mg/m³∗	g/h
тос	04/11/15	13:05	14:35	3.8	75	1.2	0.2	12.8

* at reference conditions	Stack Gas Weight	0 °C	Without correction for moisture			
	29.00 Kg/kmol	101.3 kPa	Oxygen	No Correction	%	

Where applicable Oxides of nitrogen results are expressed as nitrogen dioxide

TOC results are expressed as total carbon

Throughout Report: * Reference conditions (see above) Nm³ 273 K, 101.3 kPa

** Analysis not required #- UKAS accredited only
ND Non detectable ##- Not Accredited
s - Subcontracted laboratory analysis N/A Not applicable

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a 95% confidence level. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

All tests included in this report are accredited under UKAS and MCERTS accreditation schemes unless otherwise stated.

Opinions and interpretations expressed herein are outside the scope of MCERTS and UKAS accreditation.

1783

Page 5 of 22

Summary Of Results, Exhaust Gases

The table presents the atmospheric emissions from the tests undertaken on behalf of **Linx Printing Technologies Limited**The results were measured from the sample positions downstream of the arrestment plant.

	Emission at St Ives		Sampling Time		Emission Result	Authorised Limit	Uncertainty +/-	Detection Limit	Mass Emission
	Labs	Date	Start	End	mg/m ³ *	mg/m³*	mg/m³*	mg/m³*	g/h
тос	Test 1	04/11/15	13:05	13:35	2.9	75	1.2	0.2	9.9
тос	Test 2	04/11/15	13:35	14:05	4.5	75	1.2	0.2	15.3
TOC	Test 3	04/11/15	14:05	14:35	3.9	75	1.2	0.2	13.2

I	* at ref	Stack Gas Weight	0 °C	Without correction for moisture	
	Conditions	29.00 Kg/kmol	101.3 kPa	Oxygen No Correction %	

Where applicable Oxides of nitrogen results are expressed as nitrogen dioxide

TOC results are expressed as total carbon

Throughout Report: * Reference conditions (see above)

** Analysis not required #- UKAS accredited only
ND Non detectable ##- Not Accredited
s - Subcontracted laboratory analysis N/A Not applicable

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a 95% confidence level. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

All tests included in this report are accredited under UKAS and MCERTS accreditation schemes unless otherwise stated. Opinions and interpretations expressed herein are outside the scope of MCERTS and UKAS accreditation.

Nm³ 273 K, 101.3 kPa

Visit 1 of 2015

Page 6 of 22

Operating Information

The table below shows details of the operating information on each sampling date for: Labs

Date	Process type	Process duration	Fuel	Feedstock	Abatement	Load
04/11/2015	Laboratory	Continuous	N/A	Methyl Ethyl Ketone, Acetone & Ethanol	None	Normal Operation

There are no CEM's available on this process.

Comments & Monitoring Deviations

A waste gas homogeneity test to BS EN 15259:2007 (MID) is not required:-

The homogeneity test is not applicable to non-combustion processes.

The homogeneity test is not applicable to duct areas less than 1m².

All monitoring was performed in accordance with the relevant procedures.

The sampling location is a vertical duct.

Only one sample port was available on the vertical duct.

The velocity and temperature profile at the sampling location met the requirements of BS EN 13284-1: 2002.

When the results are expressed as non-detected the mass emissions are calculated from the detection limit and therefore they are worst case results.

Page 7 of 22

Part 2: Supporting Information

Report for the Periodic Monitoring of Emissions to Air.

Client Linx Printing Technologies Limited

Site St Ives Plant Labs

Sampling Date 4th November 2015 Report Date 2nd December 2015

Job Number EM-2112 Permit Number B18/14

Report Prepared by: Print Harpreet Badwal

MCERTS No. MM03 149 Level 2 TE: 1,2,3,4

Report Approved by: Sign

Print Derek Myers

MCERTS No. MM02 115 Level 2 TE: 1,2,3,4

1783

REC Ltd Environmental Monitoring

Unit 19 Bordesley Green Trading Estate Bordesley Green Road Birmingham B8 1BZ

Tel: 0845 676 9303

Company Registration No 03133832

Linx Printing Technologies Limited, St Ives, Permit No: B18/14, R/15-6359, v1.

Visit 1 of 2015

Page 8 of 22

APPENDIX 1

Page 9 of 22

Emission Monitoring Procedures And Instrumentation

Gas velocity and temperature

Documented in-house procedure TPM01/A to the main procedural requirements of BS EN ISO 16911-1:2013 Velocity and temperature measurements are performed using a calibrated Pitot tube, a calibrated pressure differential reading device and a calibrated thermocouple. Velocity and possible flow deviation measurements are carried out at selected, representative points in the gas stream.

Total organic carbon

Documented in-house procedure TPM/13 to the main procedural requirements of BS EN 12619:2013. Continuous analysis using probe, sample line and multi range Flame Ionisation Detector (FID) analyser. The analyser is calibrated before and during the tests using certified gas mixtures of nitrogen, oxygen and propane. Sampling points are selected in accordance with the findings of any BS EN 15259 assessment.

Page 10 of 22

Sampling Project Personnel Competency And Expiry Dates

Report prepared by:	Harpreet Badwal	MCERTS No MM03 149	Level 1	Level 2 30/09/2018	TE1 30/09/2018	TE2 30/04/2019	TE3 31/10/2019	TE4 31/10/2019
Report authorised by:	Derek Myers	MM02 115	-	30/09/2017	31/05/2018	30/11/2018	30/11/2018	30/11/2018
Team leader:	Harpreet Badwal	MM03 149	-	30/09/2018	30/09/2018	30/04/2019	31/10/2019	31/10/2019
Team leader:	Aidan Wrynne	MM08 921	-	31/05/2017	31/05/2017	31/11/2018	30/11/2017	30/06/2018

Equipment References

Equipment	Reference Number
FID	AQ271
Heated Line	HL40
Heated Filter	Sintered
Stack Thermocouple	PTTS97
Timer / Stopwatch	ST41
Barometer	WS03
Pitot	PT129
Thermometer	TK28
Manometer	PI03

Linx Printing Technologies Limited, St Ives, Permit No: B18/14, R/15-6359, v1.

Visit 1 of 2015

Page 11 of 22

APPENDIX 2

Page 12 of 22

Date	04/11/2015
Time	10:15
Pitot Cp	1.01

Barometric pressure	101.0	kPa
Duct static pressure	0.08	kPa
Stack Area	0.071	m²

Stack Diameter (circular)	0.30	m

Traverse	Traverse	Depth	ΔΡ	Т	Angle	velocity	Traverse	Depth	ΔΡ	T	Angle	velocity
Point	Line	cm	mmH ₂ O	°C	0	m/s	Line	cm	mmH ₂ O	°C	0	m/s
1	Α						В					
2	Α						В					
3	Α	5.0	18.0	22	<15	17.4	В					
4	Α	5.3	15.1	22	<15	15.9	В					
5	Α	7.5	10.8	22	<15	13.5	В					
6	Α	10.7	10.0	22	<15	12.9	В					
7	Α	19.3	16.1	22	<15	16.4	В					
8	Α	22.5	12.4	22	<15	14.4	В					
9	Α	24.7	9.6	22	<15	12.7	В					
10	Α	25.0	9.0	22	<15	12.3	В					
11	Α						В					
12	Α						В					

Average Pitot DP	12.43	mmH₂O
Average Temperature	295.2	К
Average Velocity	14.4	m/s
Average volumetric flow rate	1.02	m ³ /s at stack conditions
Average volumetric flow rate	0.94	m ³ /s (wet STP)

Sampling plane requirements Re: BS EN 13284-1:2001 5.2

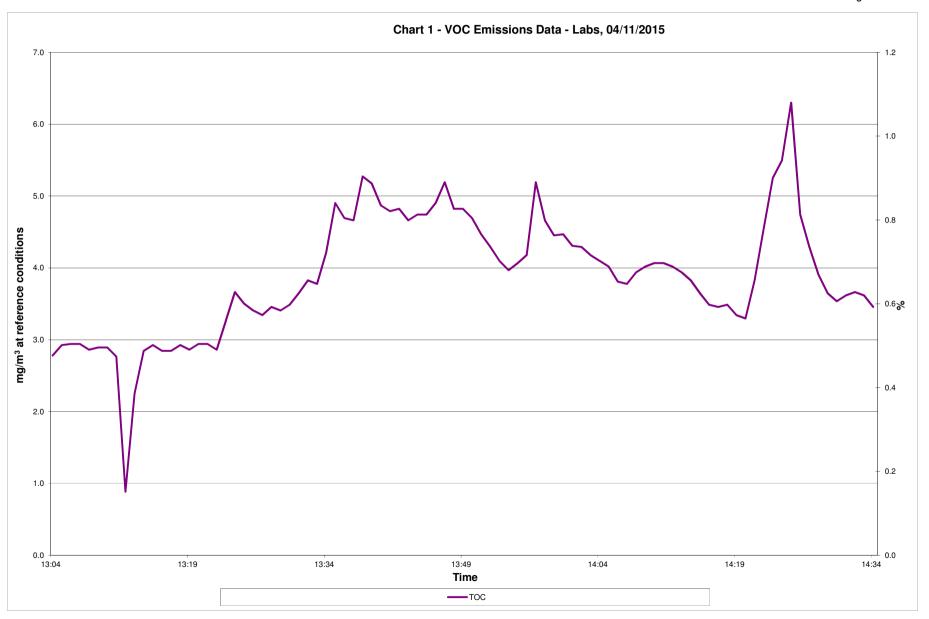
а	Angel of gas flow less than 15° with regard to duct axis		YES
b	No local negative flow		YES
С	Minimum pitot greater than 5Pa		YES
d	Ratio of highest to lowest local gas velocity less than 3:1		YES
	Minimum local gas velocity	12.3	
	Maximum local gas velocity	17.4	
	Ratio of highest to lowest local gas velocity	1.42	

Visit 1 of 2015

Page 13 of 22

Date	04/11/2015

From	13:05	to	13:35	30 minute mean		
Volatile organ	ic compounds		vppm, wet	1.82	mg/m³*	2.93
From	13:35	to	14:05	30 minute mean		
Volatile organ	nic compounds		vppm, wet	2.80	mg/m³*	4.51
_						
From	14:05	to	14:35	30 minute mean		
Volatile organ	nic compounds		vppm, wet	2.42	mg/m³*	3.88
Sampling Det	ection Limits					
Volatile organ	ic compounds		vppm	0.10	mg/m³*	0.16
Reference Ga	as Details					
					0 " 1	


Species	Units	Value	Cylinder Reference	Analyser Range	Uncertainity $k = 2$
Nitrogen	%	99.999	VCK01959	-	± 2
Volatile organic compounds	vppm	74.7	VC59841	100	± 2

Zero And Span Gas Details

Species	units	Initial Time	08:54	Final Time	17:55
		Initial Zero	Initial Span	Final Zero	Final Span
Volatile organic compounds	vppm	0.00	74.70	0.12	75.08

Exhaust Gas Continuous Analysis Data

Linx Printing Technologies Limited, St Ives, Permit No: B18/14, R/15-6359, v1.

Visit 1 of 2015

Page 15 of 22

APPENDIX 3

Page 16 of 22


Diagram Of The Sampling Location

Diagram of sampling points across the cross section of the duct (not to scale).

Traverse length =

0.30 m

Point	% of D	Location
		cm
1	50.0	15.0

Page 17 of 22

General Calculations

Stack area:

Area of a circle =
$$\frac{\pi . D^2}{4}$$

D = Diameter (m) $\pi = 3.142$

Pressure conversion:

1mmH2O = 0.00980665 kPa 1mmH2O = 9.80665 Pa 1 mar = 0.1 kPa

Water vapour concentration:

From reference calculations (taken from BS EN 14790):

$$V_{WC(\%)} = \frac{\frac{M_{WC}.V_{mol(std)}}{M_W}}{\frac{M_{WC}.V_{mol(std)}}{M_W} + V_{m(std)}} \times 100$$

VWC (%) = Water vapour content on wet basis, in volume % (m³ of water vapour in m³ of wet gas)

Vm(std) = Dry gas volume measured, corrected to standard conditions (m³)

mWC = Mass of water collected in the impingers (g)

Mw = Molecular weight of water, 18.01534 rounded to 18 (g/mol)

Vmol(std) = Molar volume of water at standard conditions = 0.0224 (m3/mol)

Gas meter volume at standard conditions (STP)

From reference calculations (taken from BS EN 14790):

$$V_{m(std)} = y_d \times (V_2 - V_1) \times \frac{T_{std}}{T_m} \times \frac{p_m}{p_{std}}$$

Vm(std) = Dry gas meter volume at standard conditions (m³)

yd = Gas meter calibration coefficient

(V2-V1) = Dry gas meter volume at actual conditions (m³)

Tm = Actual Temperature (K)
Tstd = Standard temperature (273 K)

pm = Absolute pressure at the gas meter (kPa) pstd = Standard gas pressure (101.3 kPa)

Isokenetic Ratio (%):

From reference calculations (taken from EA TGN M2):

$$IsokineticRatio(\%) = \frac{Velocity\ at\ the\ sampling\ nozzle}{Velocity\ of\ the\ stack\ gas} \times 100$$

Estimating Measurment Uncertainty

Uncertainty estimates are calculated using the general rule of uncertainty propagation. Guidance is taken from publications including UKAS document M3003 and ISO 20988:2007.

Flow Calculations

Velocity:

From reference calculations (taken from ISO 10780):

$$\overline{v} = KC \sqrt{\frac{T_s \Delta \overline{p}}{p_e M_s}}$$

 $\bar{v} = \text{Average velocity (m/s)}$

 \dot{C} = velocity calculation constant = 129

Ts = Average stack temperature (K)

Ms = Molar mass of gas; assume 29 kg/kmol unless the molar mass is < 27 kg/kmol or > 31 g/kmol

K = Pitot calibration coefficientPe = Absolute gas pressure (kPa)

 $\Delta p = \Delta p$ Average pitot tube pressure differencial (kPa)

Volume flow rate

From reference calculations (taken from ISO 10780):

$$q_{va} = vA$$

qva = Average flow rate (m³/s)

v = v Average velocity (m/s)

A =Stack cross-sectional area (m²)

Volume flow rate corrected for moisture

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{(100 - H_a)}{(100 - H_m)}$$

qm =Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s) Ha = Moisture at actual conditions (%volume)

Hm = Reference moisture (%volume)

Volume flow rate corrected for temperature and pressure

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{\left(T_m p_a\right)}{\left(T_a p_m\right)}$$

qm =Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s)

Ta = Temperature at actual conditions (K)

Tm = Reference Temperatue (K)

pa = Absolute gas pressure at actual conditions (kPa)

pm = Reference pressure (kPa)

Volume flow rate corrected for oxygen

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{\left(20.9 - O_{2,ref}\right)}{\left(20.9 - O_{2,m}\right)}$$

qm = Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s)

O2,m = Actual oxygen concentration (%)

O2,ref = Reference oxygen concentration (%)

Page 19 of 22

Concentration Calculations

Concentration:

From reference calculations (taken from BS EN 13284-1):

$$c = \frac{m}{V}$$

c = Concentration m = Mass of substane V = Volume sampled

Mass Emission

Mass emission= $c \times q_m$

c = Concentration q = Volume flow rate

Concentration corrected for oxygen:

From reference calculations (taken from BS ISO 9096):

$$c_m = c_a \times \frac{20.9 - O_{2,ref}}{20.9 - O_{2,a}}$$

cm = Concentration at reference conditions

ca = Actual concentration
 O2, ref = Reference oxygen (%)
 O2, a= Actual Oxygen (%)

Concentration corrected for moisture:

From reference calculations (taken from BS ISO 9096):

Convert wet gas to dry gas

$$c_{dry} = c_{wet} \times \frac{100}{100 - H_a}$$

Convert dry gas to wet gas

$$c_{wet} = c_{dry} \times \frac{100 - H_a}{100}$$

cwet = Concentration wet gascdry = Concentration dry gasHa = Water vapour content (%vol)

Conversion of parts per million (ppm) to mg/m³

From reference calculations (taken from EA TGN M2):

$$Concentration(mg/m^3) = \frac{Concentration(ppm) \times molecular\ weight(g)}{molar\ volume(l)\ at\ a\ given\ temperature}$$

molar volume at 273K = 22.4 litres

When Converting TOC

 $Concentration(mg/m^3) = \frac{Concentration(ppm) \times molecular\ weight of\ carbonin\ span\ gas(g)}{molar\ volume(l)\ at\ a\ given\ temperature}$

molar volume at 273K = 22.4 litres

Page 20 of 22

Calculation of Uncertainty Estimates - Instrumental Monitoring Techniques

Model equation

 $C_{ppm} = C_{reading} + Corr_{fit} + Corr_{f,dr} + Corr_{s,dr} + Corr_{rep} + Corr_{adj} + \sum_{i=1}^{p} Corr_{inf} + Corr_{inf}$

Corr_{rep} Corr_{adj} Corr_{inf} correction of repeatability of measurement $C_{,ppm}$ concentration in ppm concentration given by analyser C_{NO.reading} correction of adjustment Corr fit correction of lack of fit correction of influence quantities

Corr _{0,dr} correction of zero drift Corr s,dr correction of span drift

Calculation of partial uncertainties

u(Corr_{fit}) $\left(\frac{X_{fit,\max}}{100 \times range}\right)$ Where: $X_{\text{fit,max}}$ is the maximum allowable deviation from linearity

Expressed as % of the range and calculated by applying a rectangular probability distribution

u(Corr_{0.dr})

max (S_{0,rep}; S_{srep}) u(Corr_{rep}) Where:

is the standard uncertainty at zero level is the standard uncertainty at span level

u(Corr_{adj}) $u(Corr_{loss}) + u(Corr_{cal})$

 $u(Corr_{loss})$ is the uncertainty due to losses in sample line is the uncertainty due to losses in sample line is the concentration of sample loss at span level $u(Corr_{cal})$ is the expanded uncertainty of the calibration gas

 $= c_{j} \sqrt{\frac{(x_{j,\max} - x_{j,adj})^{2} + (x_{j,\min} - x_{j,adj}) \times (x_{j,\max} - x_{j,adj}) + (x_{j,\min} - x_{j,adj})^{2}}{3}}$ u(Corr inf)

is the sensitivity coefficient of the influence quantity

is the minimum value of the influence quantity during monitoring is the maximum value of the influence quantity during monitoring is the value of the influence quantity during adjustment

 $= \frac{c_{j}}{Int_{j,lest}} \sqrt{\frac{Int_{j,max}^{2} + Int_{j,min} \times Int_{j,max} + Int_{j,min}^{2}}{3}}$

 c_{j} Int_{j,test} is the sensitivity coefficient of the interferent i $= \max \left[S_{Int,p}; S_{Int,n} \right]$ $u(\Sigma Corr_{int})$ is the concentration of the interferent j used to determine c is the minimum value of the interferent j quantity during monitoring

is the maximum value of the interferent i quantity during monitoring

 $\mathsf{Int}_{\mathsf{j},\mathsf{adj}}$ is the concentration of the interferent j in the cal gas used to adjust the analyse

 $S_{int,p}$ is the sum of interferents with positive impact is the sum of interferents with negative impact

Combined uncertainty

 $u(C_{,ppm})$

$$\sqrt{u^2(corr_{\mathit{fit}}) + u^2(corr_{\mathit{0,dr}}) + u^2(corr_{\mathit{s,dr}}) + u^2(corr_{\mathit{rep}}) + u^2(corr_{\mathit{rep}}) + u^2(corr_{\mathit{s,yf}}) + u^2(corr_{\mathit{a,press}}) + u^2(corr_{\mathit{emp}}) + u^2(corr_{\mathit{volt}}) + u^2(corr_{\mathit{adj}}) + S_{\mathit{hit}}^{-2}}$$

Overall expanded uncertainty (k = 2)

$$U(C_m) = u(C_m) \times k$$

Uncertainty of NOx measurements

C_{NOx} is the concentration of NOx measured by the analyser is the ratio of NO:Nox in the stack gas is the NOx converter efficiency

Combined uncertainty NOx measurements

$$\sqrt{u^{2}(corr_{fit}) + u^{2}(corr_{0,dr}) + u^{2}(corr_{s,dr}) + u^{2}(corr_{rep}) + u^{2}(corr_{rep}) + u^{2}(corr_{s,vf}) + u^{2}(corr_{a,press}) + u^{2}(corr_{temp}) + u^{2}(corr_{volt}) + u^{2}(corr_{adj}) + S_{lnt}^{2} + u^{2}(corr_{NOx,comv}) + u^{2}(corr_{temp}) + u^{2}(cor$$

Uncertainty of mass concentration at oxygen reference concentration

u(C, O2 ref)

$$\sqrt{u^{2}(corr_{fit}) + u^{2}(corr_{o,dr}) + u^{2}(corr_{s,dr}) + u^{2}(corr_{s,dr}) + u^{2}(corr_{s,ef}) + u^{2}(corr_{s,ef}) + u^{2}(corr_{s,ef}) + u^{2}(corr_{temp}) + u^{2}(corr_{temp}) + u^{2}(corr_{odi}) + u^{2}(corr_{od$$

u(C,O_{2,ref)} uncertainty associated with the mass concentration at O₂ ref. concentration mg/m³ C,O_{2,ref} mg/m³ mass concentration at O₂ reference concentration O2 measured concentration % volume uncertainty associated to the measured O2 concentration % (relative to O_{2 meas}) Linx Printing Technologies Limited, St Ives, Permit No: B18/14, R/15-6359, v1.

Visit 1 of 2015

Page 21 of 22

APPENDIX 4

Uncertainty Estimate For The Measurement Of Total Organic Carbon

	Uncertainty	Estimate	FOI THE	weasureme	iii Oi
Analyser Type/Model		Maihak			
Reference Oxygen %		0	(0 = No corre	ction)	
	ſ	Test 1	Test 2	Test 3	
Limit value	mg/m ³	75	75	75	
Limit value	ppm	46.7	46.7	46.7	
Measured concentration	ppm	1.8	2.8	2.4	
Measured concentration	mg/m ³	2.9	4.5	3.9	
Concentration at O ₂ ref. concentration	mg/m ³	N/A	N/A	N/A	
Calibration gas	ppm	74.7	74.7	74.7	
Calibration gas	mg/m ³	120.1	120.1	120.1	
Analyser range	ppm	9.3	9.3	9.3	
nalyser range	mg/m ³	15.0	15.0	15.0	
Correction of Lack of Fit			•		
ack of fit	% range	2.0	2.0	2.0	
	u(Corr, _{fit})	0.11	0.11	0.11	
Corrections of Zero and Span Drift				assumed to be	< 5% u(r
ero Drift	% range	0.00	0.00	0.00	
D D-14	u(Corr, _{Odr})	0.00	0.00	0.00	
pan Drift	% range				
_	u(Corr, _{sdr})	0.00	0.00	0.00	
correction of Repeatability of Measurement					
Repeatability SD at span level	% range	0.0	0.0	0.0	
Not reported)	u(Corr, _{rep})	0.00	0.00	0.00	
tot roportou)	a(John,rep)	0.00	0.00	0.00	
Correction of adjustment					
osses in the line	% range	0.27	0.27	0.27	
assess in the inte	u(Corr, _{loss})	0.00	0.00	0.00	
Incertainty of calibration gas	% range	2.0	2.0	2.0	
incertainty of calibration gas	u(Corr, _{cal})	0.02	0.03	0.02	
	u(Oon (cal)	0.02	0.00	0.02	
Correction of Influence of Interferents					
I ₂ O	% range				
<u>-</u> -	u(Corr, _{N2O})	0.00	0.00	0.00	
O ₂	% range	0.00	0.00	0.00	
	u(Corr, _{CO2})	0.00	0.00	0.00	
CH₄	% range	0.00	0.00	0.00	
4	u(Corr, _{CH4})	0.00	0.00	0.00	
otal of interferent influences .	% range	2.50	2.50	2.50	
$I(\Sigma Corrint) = \max [S_{int,p}; S_{int,n}]$	$u(\Sigma Corr_{int})$	0.16	0.16	0.16	
· · ·					
Correction of Influence Quantities					
Sensitivity to sample volume flow	% range	1.60	1.60	1.60	
	u(Corr,flow)	0.09	0.09	0.09	
Sensitivity to atmospheric pressure	% range				
Not reported)	u(Corr,press)	0.00	0.00	0.00	
Sensitivity to ambient temperature	% range	-2.40	-2.40	-2.40	
	u(Corr, _{temp})	-0.28	-0.28	-0.28	
Sensitivity to electrical voltage	% range	0.50	0.50	0.50	
Not reported)	u(Corr, _{volt})	0.10	0.10	0.10	
<u> </u>					
Maximum standard uncertainty	u(Corr, _{max})	0.11	0.11	0.11	
% of maximum standard uncertainty	u(Corr,5%)	0.01	0.01	0.01	
			_		
terferent Concentration Variations	Minimum	Maximum	Value at cal	Performance	Units
H ₄ range	0	10	0	50	mg/m ³
₂ O range	0	0	0	20	mg/m ³
O ₂ range	8	12	0	15	mg/m ³
xygen effect variations	Minimum	Maximum	Value at cal	Performance	Units
xygen effect	0	20	0	2	mg/m ³
nfluence Quantitiy Variations					
	Minimum	Maximum	Value at cal	Performance	Units
ensitivity to sample volume flow	55	65	60	5	l/h
ensitivity to atmospheric pressure	99	100	99	1	kPa
ensitivity to ambient temperature	278	313	288	10	K
ensitivity to electrical voltage	187	250	230	5	V
ensitivity to electrical voltage			_		
-		_	Toot 0	Test 3	
Measurement uncertainty		Test 1	Test 2		
Measurement uncertainty Combined uncertainty	ppm	0.37	0.37	0.37	
feasurement uncertainty combined uncertainty combined uncertainty	ppm mg/m³	0.37 0.59	0.37 0.59	0.59	
feasurement uncertainty combined uncertainty combined uncertainty	ppm	0.37	0.37		
Measurement uncertainty Combined uncertainty Combined uncertainty Combined uncertainty Combined uncertainty at oxygen reference	ppm mg/m³ mg/m³	0.37 0.59 0.59	0.37 0.59	0.59	
fleasurement uncertainty combined uncertainty combined uncertainty combined uncertainty combined uncertainty at oxygen reference expanded uncertainty expressed with a level of con	ppm mg/m³ mg/m³	0.37 0.59 0.59	0.37 0.59 0.59	0.59 0.59	
feasurement uncertainty combined uncertainty combined uncertainty combined uncertainty combined uncertainty at oxygen reference expanded uncertainty expressed with a level of con verall uncertainty	ppm mg/m³ mg/m³	0.37 0.59 0.59 0.59	0.37 0.59 0.59	0.59 0.59	
Measurement uncertainty Combined uncertainty Combined uncertainty Combined uncertainty Combined uncertainty at oxygen reference Expanded uncertainty expressed with a level of con Diversall uncertainty Diversall uncertainty	ppm mg/m³ mg/m³ ffidence of 95%, k- ppm mg/m³	0.37 0.59 0.59 =2 0.7 1.2	0.37 0.59 0.59 0.7 1.2	0.59 0.59 0.7 1.2	
Measurement uncertainty Combined uncertainty Combined uncertainty Combined uncertainty at oxygen reference Expanded uncertainty expressed with a level of con Overall uncertainty Overall uncertainty Overall uncertainty	ppm mg/m³ mg/m³ ifidence of 95%, k ppm mg/m³	0.37 0.59 0.59 =2 0.7 1.2 40.1	0.37 0.59 0.59 0.7 1.2 26.1	0.59 0.59 0.7 1.2 30.3	
Measurement uncertainty Combined uncertainty Combined uncertainty Combined uncertainty Combined uncertainty at oxygen reference Expanded uncertainty expressed with a level of con Diverall uncertainty Diverall uncertainty Diverall uncertainty Diverall uncertainty Diverall uncertainty relative to measured value Diverall uncertainty relative to range Diverall uncertainty relative to ELV	ppm mg/m³ mg/m³ ffidence of 95%, k- ppm mg/m³	0.37 0.59 0.59 =2 0.7 1.2	0.37 0.59 0.59 0.7 1.2	0.59 0.59 0.7 1.2	

The uncertainty evaluation has been carried out in accordance with UKAS requirements.

Page 1 of 22

Client Linx Printing Technologies Limited

Linx House

8 Stocks Bridge Way

St Ives

Cambridgeshire

PE27 5JL

Part 1: Executive Summary

Report for the Periodic Monitoring of Emissions to Air.

Site St Ives
Plant RASTA

Sampling Date 4th November 2015 Report Date 7th December 2015

Job Number EM-2112 Permit Number B18/14

Report Prepared by: Print Harpreet Badwal

MCERTS No. MM03 149 Level 2 TE: 1,2,3,4

Report Approved by: Sign

Print Derek Myers

MCERTS No. MM02 115 Level 2 TE: 1,2,3,4

REC Ltd Environmental Monitoring

Unit 19 Bordesley Green Trading Estate Bordesley Green Road Birmingham B8 1BZ

Tel: 0845 676 9303 Company Registration No 03133832

Contents

Page 1	Part 1: Executive Summary
Page 2	Contents
Page 3	Monitoring Objectives
Page 3	Special Monitoring Requirements
Page 3	Summary Of Methods
Page 4	Summary Of Results
Page 5	Summary Of Results, Exhaust Gases
Page 6	Operating Information
Page 6	Comments On Monitoring Procedures
Page 7	Part 2: Supporting Information
Page 8	Appendix 1
Page 9	Emission Monitoring Procedures and Instrumentation
Page 10	Sampling Personnel
Page 10	Equipment References
Page 11	Appendix 2
Page 12	Preliminary Velocity Traverse Data
Page 13	Exhaust Gases - Continuous Analysis Data
Page 14	Chart 1 - VOC Emissions Data
Page 15	Appendix 3
Page 16	Diagram of Sampling Location
Page 17	Generic Calculations
Page 18	Flow Calculations
Page 19	Concentration Calculation
Page 20	Uncertainty Estimate Calculations - Instrumental Techniques
Page 21	Appendix 4
Page 22	Uncertainty Estimates:- TOC

Visit 1 of 2015

Page 3 of 22

Monitoring Objectives

The monitoring was undertaken to check compliance with authorised emission limits.

All monitoring procedures were carried out to the MCERTS requirements under the REC Environmental Monitoring quality system to ISO 17025: 2005.

Monitoring was undertaken for the listed emissions from the following sampling positions:

Sampling Location	Emission		
RASTA	Total organic carbon		

Special Monitoring Requirements

There were no special requirements for this monitoring campaign.

Summary of Methods

Emission	Method number	Method standard
Gas velocity and volume flow	TPM/01A	BS EN ISO 16911-1:2013
тос	TPM/13	BS EN 12619 : 2013

Page 4 of 22

Summary Of Results

The table presents the atmospheric emissions from the tests undertaken on behalf of Linx Printing Technologies Limited The results were measured from the sample positions downstream of the arrestment plant.

Emission at	Sampling		Emission	Authorised	Uncertainty	Detection	Mass	
St Ives	Time		Result	Limit	+/-	Limit	Emission	
RASTA	Date	Start	End	mg/m³*	mg/m ³ *	mg/m³*	mg/m³*	g/h
тос	04/11/15	14:40	16:10	2.9	75	1.2	0.2	1.2

* at reference conditions	Stack Gas Weight	0 °C	Without correction	n for moisture	
	29.00 Kg/kmol	101.3 kPa	Oxygen	No Correction	%

Where applicable Oxides of nitrogen results are expressed as nitrogen dioxide

TOC results are expressed as total carbon

Throughout Report: * Reference conditions (see above) Nm³ 273 K, 101.3 kPa

** Analysis not required #- UKAS accredited only
ND Non detectable ##- Not Accredited
s - Subcontracted laboratory analysis N/A Not applicable

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a 95% confidence level. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

All tests included in this report are accredited under UKAS and MCERTS accreditation schemes unless otherwise stated.

Opinions and interpretations expressed herein are outside the scope of MCERTS and UKAS accreditation.

1783

Page 5 of 22

Summary Of Results, Exhaust Gases

The table presents the atmospheric emissions from the tests undertaken on behalf of **Linx Printing Technologies Limited**The results were measured from the sample positions downstream of the arrestment plant.

E	mission at St Ives		Sampling Time		Emission Result	Authorised Limit	Uncertainty +/-	Detection Limit	Mass Emission
RASTA		Date	Start	End	mg/m ³ *	mg/m³*	mg/m³*	mg/m³*	g/h
тос	Test 1	04/11/15	14:40	15:10	2.9	75	1.2	0.2	1.2
тос	Test 2	04/11/15	15:10	15:40	3.0	75	1.2	0.2	1.2
тос	Test 3	04/11/15	15:40	16:10	2.9	75	1.2	0.2	1.2

ı	* at ref	Stack Gas Weight	0 °C	Without correction for moisture
	Conditions	29.00 Kg/kmol	101.3 kPa	Oxygen No Correction %

Where applicable Oxides of nitrogen results are expressed as nitrogen dioxide

TOC results are expressed as total carbon

Throughout Report: * Reference conditions (see above)

** Analysis not required #- UKAS accredited only
ND Non detectable ##- Not Accredited
s - Subcontracted laboratory analysis N/A Not applicable

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a 95% confidence level. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

All tests included in this report are accredited under UKAS and MCERTS accreditation schemes unless otherwise stated. Opinions and interpretations expressed herein are outside the scope of MCERTS and UKAS accreditation.

Nm³ 273 K, 101.3 kPa

Visit 1 of 2015

Page 6 of 22

Operating Information

The table below shows details of the operating information on each sampling date for: RASTA

Date	Process type	Process duration	Fuel	Feedstock	Abatement	Load
04/11/2015	Ink Printer Test Rig RASTA	Batch	N/A	Methyl Ethyl Ketone	None	200 ml/day of solvent

There are no CEM's available on this process.

Comments & Monitoring Deviations

A waste gas homogeneity test to BS EN 15259:2007 (MID) is not required:-

The homogeneity test is not applicable to non-combustion processes.

The homogeneity test is not applicable to duct areas less than 1m².

All monitoring was performed in accordance with the relevant procedures.

The sampling location is a horizontal duct.

Only one sample port was available on the horizontal duct.

The velocity and temperature profile at the sampling location met the requirements of BS EN 13284-1: 2002.

When the results are expressed as non-detected the mass emissions are calculated from the detection limit and therefore they are worst case results.

Page 7 of 22

Part 2: Supporting Information

Report for the Periodic Monitoring of Emissions to Air.

Client Linx Printing Technologies Limited

Site St Ives Plant RASTA

Sampling Date 4th November 2015 Report Date 7th December 2015

Job Number EM-2112 Permit Number B18/14

Report Prepared by: Print Harpreet Badwal

MCERTS No. MM03 149 Level 2 TE: 1,2,3,4

Report Approved by: Sign

Print Derek Myers

MCERTS No. MM02 115 Level 2 TE: 1,2,3,4

REC Ltd Environmental Monitoring

Unit 19 Bordesley Green Trading Estate Bordesley Green Road Birmingham B8 1BZ

Tel: 0845 676 9303

Company Registration No 03133832

Linx Printing Technologies Limited, St Ives, Permit No: B18/14, R/15-6360, v1

Visit 1 of 2015

Page 8 of 22

Page 9 of 22

Emission Monitoring Procedures And Instrumentation

Gas velocity and temperature

Documented in-house procedure TPM01/A to the main procedural requirements of BS EN ISO 16911-1:2013 Velocity and temperature measurements are performed using a calibrated Pitot tube, a calibrated pressure differential reading device and a calibrated thermocouple. Velocity and possible flow deviation measurements are carried out at selected, representative points in the gas stream.

Total organic carbon

Documented in-house procedure TPM/13 to the main procedural requirements of BS EN 12619:2013. Continuous analysis using probe, sample line and multi range Flame Ionisation Detector (FID) analyser. The analyser is calibrated before and during the tests using certified gas mixtures of nitrogen, oxygen and propane. Sampling points are selected in accordance with the findings of any BS EN 15259 assessment.

Sampling Project Personnel Competency And Expiry Dates

Report prepared by:	Harpreet Badwal	MCERTS No MM03 149	Level 1	Level 2 30/09/2018	TE1 30/09/2018	TE2 30/04/2019	TE3 31/10/2019	TE4 31/10/2019
Report authorised by:	Derek Myers	MM02 115	-	30/09/2017	31/05/2018	30/11/2018	30/11/2018	30/11/2018
Team leader:	Harpreet Badwal	MM03 149	-	30/09/2018	30/09/2018	30/04/2019	31/10/2019	31/10/2019
Team leader:	Aidan Wrynne	MM08 921	-	31/05/2017	31/05/2017	31/11/2018	30/11/2017	30/06/2018

Equipment References

Equipment	Reference Number
FID	AQ271
Heated Line	HL40
Heated Filter	Sintered
Stack Thermocouple	PTTS97
Timer / Stopwatch	ST41
Barometer	WS03
Pitot	PT129
Thermometer	TK28
Manometer	PI03

Linx Printing Technologies Limited, St Ives, Permit No: B18/14, R/15-6360, v1

Visit 1 of 2015

Page 11 of 22

Page 12 of 22

Date	04/11/2015
Time	13:40
Pitot Cp	1.01

Barometric pressure	101.0	kPa
Duct static pressure	-0.70	kPa
Stack Area	0.013	m²

Stack Diameter (circular)	0.13	m

Traverse	Traverse	Depth	ΔΡ	T	Angle	velocity	Traverse	Depth	ΔΡ	T	Angle	velocity
Point	Line	cm	mmH ₂ O	°C	0	m/s	Line	cm	mmH ₂ O	°C	0	m/s
1	Α						В					
2	Α						В					
3	Α						В					
4	Α						В					
5	Α						В					
6	Α	5.0	4.8	17	<15	8.9	В					
7	Α	8.0	5.0	17	<15	9.1	В					
8	Α						В					
9	Α						В					
10	Α						В					
11	Α						В					
12	Α				_		В					

Average Pitot DP	4.89	mmH ₂ O
Average Temperature	290.2	К
Average Velocity	9.0	m/s
Average volumetric flow rate	0.12	m ³ /s at stack conditions
Average volumetric flow rate	0.11	m ³ /s (wet STP)

Sampling plane requirements Re: BS EN 13284-1:2001 5.2

а	Angel of gas flow less than 15° with regard to duct axis		YES			
b	No local negative flow					
С	Minimum pitot greater than 5Pa					
d	Ratio of highest to lowest local gas velocity less than 3:1					
	Minimum local gas velocity 8.9					
	Maximum local gas velocity 9.1					
	Ratio of highest to lowest local gas velocity 1.02					

Visit 1 of 2015

Page 13 of 22

± 2

100

From	14:40	to	15:10	30 minute mean			
Volatile organ	ic compounds		vppm, wet	1.83	mg/m³*	2.	94
From	15:10	to	15:40	30 minute mean			
Volatile organ	ic compounds		vppm, wet	1.87	mg/m³*	3.	01
<u>=</u>							
From	15:40	to	16:10	30 minute mean			
Volatile organ	ic compounds		vppm, wet	1.79	mg/m³*	2.	88
_							
Sampling Det	ection Limits						
Volatile organ	ic compounds		vppm	0.10	mg/m³*	0.	16
Reference Ga	as Details						
Species			Units	Value	Cylinder	Analyser	Uncertainity
					Reference	Range	k = 2

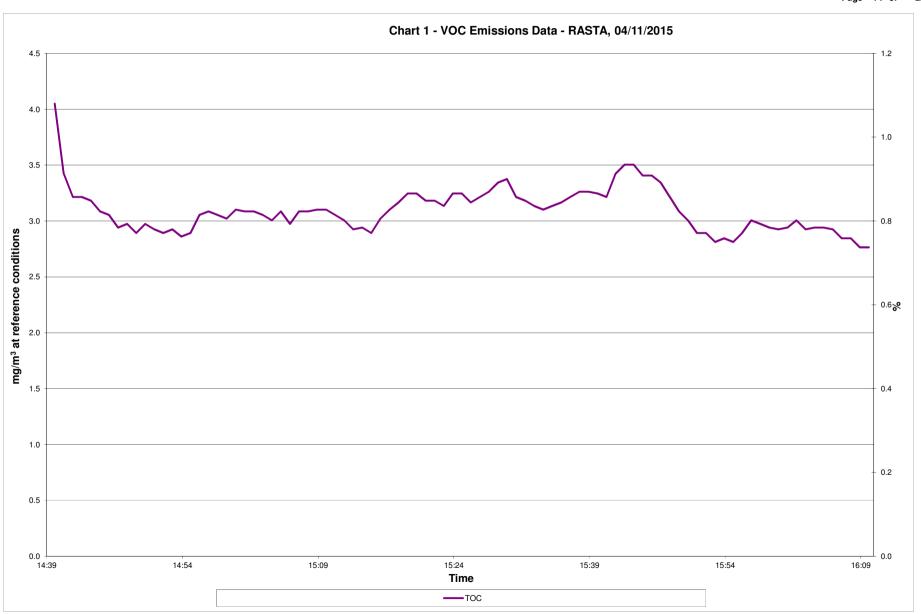
Volatile organic compounds

Nitrogen

Zero And Span Gas Details							
Species	units	Initial Time	08:54	Final Time	17:55		
		Initial Zero	Initial Span	Final Zero	Final Span		
Volatile organic compounds	vppm	0.00	74.70	0.12	75.08		

vppm

99.999


74.7

VCK01959

VC59841

Exhaust Gas Continuous Analysis Data

Linx Printing Technologies Limited, St Ives, Permit No: B18/14, R/15-6360, v1

Visit 1 of 2015

Page 15 of 22

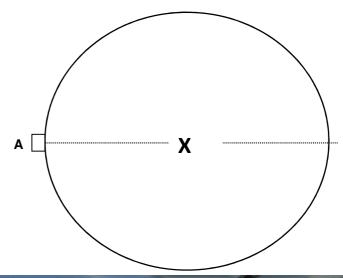

Diagram Of The Sampling Location

Diagram of sampling points across the cross section of the duct (not to scale).

Traverse length =

\sim	4	2		~
U	ı	3	- [П

Point	% of D	Location
		cm
1	50.0	6.5

Page 17 of 22

General Calculations

Stack area:

Area of a circle =
$$\frac{\pi \cdot D^2}{4}$$

D = Diameter (m) $\pi = 3.142$

Pressure conversion:

1mmH2O = 0.00980665 kPa 1mmH2O = 9.80665 Pa 1 mar = 0.1 kPa

Water vapour concentration:

From reference calculations (taken from BS EN 14790):

$$V_{WC(\%)} = \frac{\frac{M_{WC}.V_{mol(std)}}{M_{W}}}{\frac{M_{WC}.V_{mol(std)}}{M_{W}} + V_{m(std)}} \times 100$$

VWC (%) = Water vapour content on wet basis, in volume % (m³ of water vapour in m³ of wet gas)

Vm(std) = Dry gas volume measured, corrected to standard conditions (m³)

mWC = Mass of water collected in the impingers (g)

Mw = Molecular weight of water, 18.01534 rounded to 18 (g/mol)

Vmol(std) = Molar volume of water at standard conditions = 0.0224 (m3/mol)

Gas meter volume at standard conditions (STP)

From reference calculations (taken from BS EN 14790):

$$V_{m(std)} = y_d \times (V_2 - V_1) \times \frac{T_{std}}{T_m} \times \frac{p_m}{p_{std}}$$

Vm(std) = Dry gas meter volume at standard conditions (m³)

yd = Gas meter calibration coefficient

(V2-V1) = Dry gas meter volume at actual conditions (m³)

Tm = Actual Temperature (K)
Tstd = Standard temperature (273 K)

pm = Absolute pressure at the gas meter (kPa)
pstd = Standard gas pressure (101.3 kPa)

Isokenetic Ratio (%):

From reference calculations (taken from EA TGN M2):

$$IsokineticRatio(\%) = \frac{Velocity\ at\ the\ sampling\ nozzle}{Velocity\ of\ the\ stack\ gas} \times 100$$

Estimating Measurment Uncertainty

Uncertainty estimates are calculated using the general rule of uncertainty propagation. Guidance is taken from publications including UKAS document M3003 and ISO 20988:2007.

Flow Calculations

Velocity:

From reference calculations (taken from ISO 10780):

$$\overline{v} = KC \sqrt{\frac{T_s \Delta \overline{p}}{p_e M_s}}$$

 $\frac{1}{v}$ = Average velocity (m/s)

 \dot{C} = velocity calculation constant = 129

Ts = Average stack temperature (K)

Ms = Molar mass of gas; assume 29 kg/kmol unless the molar mass is < 27 kg/kmol or > 31 g/kmol

K = Pitot calibration coefficientPe = Absolute gas pressure (kPa)

 $\Delta p = \Delta p$ Average pitot tube pressure differencial (kPa)

Volume flow rate

From reference calculations (taken from ISO 10780):

$$q_{va} = vA$$

qva = Average flow rate (m³/s)

v = v Average velocity (m/s)

A =Stack cross-sectional area (m²)

Volume flow rate corrected for moisture

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{(100 - H_a)}{(100 - H_m)}$$

qm =Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s) Ha = Moisture at actual conditions (%volume)

Hm = Reference moisture (%volume)

Volume flow rate corrected for temperature and pressure

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{\left(T_m p_a\right)}{\left(T_a p_m\right)}$$

qm =Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s)

Ta = Temperature at actual conditions (K)

Tm = Reference Temperatue (K)

pa = Absolute gas pressure at actual conditions (kPa)

pm = Reference pressure (kPa)

Volume flow rate corrected for oxygen

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{\left(20.9 - O_{2,ref}\right)}{\left(20.9 - O_{2,m}\right)}$$

qm =Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s)

O2,m = Actual oxygen concentration (%)

O2,ref = Reference oxygen concentration (%)

Concentration Calculations

Concentration:

From reference calculations (taken from BS EN 13284-1):

$$c = \frac{m}{V}$$

c = Concentration m = Mass of substane V = Volume sampled

Mass Emission

Mass emission= $c \times q_m$

c = Concentration q = Volume flow rate

Concentration corrected for oxygen:

From reference calculations (taken from BS ISO 9096):

$$c_m = c_a \times \frac{20.9 - O_{2,ref}}{20.9 - O_{2,a}}$$

cm = Concentration at reference conditions

ca = Actual concentration
O2, ref = Reference oxygen (%)
O2, a= Actual Oxygen (%)

Concentration corrected for moisture:

From reference calculations (taken from BS ISO 9096):

Convert wet gas to dry gas

$$c_{dry} = c_{wet} \times \frac{100}{100 - H_a}$$

Convert dry gas to wet gas

$$c_{wet} = c_{dry} \times \frac{100 - H_a}{100}$$

cwet = Concentration wet gascdry = Concentration dry gasHa = Water vapour content (%vol)

Conversion of parts per million (ppm) to mg/m³

From reference calculations (taken from EA TGN M2):

$$Concentration(mg/m^3) = \frac{Concentration(ppm) \times molecular\ weight(g)}{molar\ volume(l)\ at\ a\ given\ temperature}$$

molar volume at 273K = 22.4 litres

When Converting TOC

$$Concentration(mg/m^3) = \frac{Concentration(ppm) \times molecular\ weight of\ carbonin\ span\ gas(g)}{molar\ volume(l)\ at\ a\ given\ temperature}$$

Calculation of Uncertainty Estimates - Instrumental Monitoring Techniques

Model equation

 $C_{ppm} = C_{reading} + Corr_{fit} + Corr_{f,dr} + Corr_{s,dr} + Corr_{rep} + Corr_{adj} + \sum_{i=1}^{p} Corr_{inf} + Corr_{inf}$

correction of repeatability of measurement $C_{,ppm}$ concentration in ppm

Corr_{rep} Corr_{adj} Corr_{inf} concentration given by analyser C_{NO.reading} correction of adjustment Corr fit correction of lack of fit correction of influence quantities Corr _{0,dr} correction of zero drift

Corr s,dr correction of span drift

Calculation of partial uncertainties

u(Corr_{fit}) $\left(\frac{X_{fit,\max}}{100 \times range}\right)$ Where: $X_{\text{fit,max}}$ is the maximum allowable deviation from linearity

Expressed as % of the range and calculated by applying a rectangular probability distribution

$$u(Corr_{rep}) \hspace{1.5cm} = \hspace{1.5cm} max \ (S_{0,rep} \ ; S_{srep}) \hspace{1.5cm} = \hspace{1.5cm} S_{rep} \\ \hspace{1.5cm} Where: \hspace{1.5cm} \\$$

is the standard uncertainty at zero level is the standard uncertainty at span level

$$u(Corr_{int}) = c_{j} \sqrt{\frac{(x_{j,\max} - x_{j,adj})^{2} + (x_{j,\min} - x_{j,adj}) \times (x_{j,\max} - x_{j,adj}) + (x_{j,\min} - x_{j,adj})^{2}}{3}}$$

is the sensitivity coefficient of the influence quantity is the minimum value of the influence quantity during monitoring is the maximum value of the influence quantity during monitoring is the value of the influence quantity during adjustment

$$u(Corr_{int}) = \frac{c_j}{Int_{j,test}} \sqrt{\frac{Int_{j,max}^2 + Int_{j,min} \times Int_{j,max} + Int_{j,min}^2}{3}}$$

 $= \max \left[S_{Int,p}; S_{Int,n} \right]$

 c_{j} $Int_{j,test}$ is the sensitivity coefficient of the interferent i is the concentration of the interferent j used to determine c is the minimum value of the interferent j quantity during monitoring is the maximum value of the interferent i quantity during monitoring

 $\mathsf{Int}_{\mathsf{j},\mathsf{adj}}$ is the concentration of the interferent j in the cal gas used to adjust the analyser

 $S_{int,p}$ is the sum of interferents with positive impact is the sum of interferents with negative impact

Combined uncertainty

 $u(\Sigma Corr_{int})$

$$u(C_{ppm}) =$$

$$\sqrt{u^2 (corr_{\mathit{fit}}) + u^2 (corr_{\mathit{o,dr}}) + u^2 (corr_{\mathit{s,dr}}) + u^2 (corr_{\mathit{rep}}) + u^2 (corr_{\mathit{s,yf}}) + u^2 (corr_{\mathit{a,press}}) + u^2 (corr_{\mathit{temp}}) + u^2 (corr_{\mathit{volt}}) + u^2 (corr_{\mathit{adj}}) + S_{\mathit{hit}}^{-2}}$$

Overall expanded uncertainty (k = 2)

$$U(C_m) = u(C_m) \times k$$

Uncertainty of NOx measurements

$$u(C_{NOx},_{conv}) = \frac{C_{NOx} \times R \times \eta}{\sqrt{3}}$$
 Where:
$$C_{NOx}$$
 is the concentration of NOx measured by the analyser is the ratio of NO:Nox in the stack gas is the NOx converter efficiency

Combined uncertainty NOx measurements

$$u(C_{NOx}, _{stack}) =$$

$$\sqrt{u^{2}(corr_{fit}) + u^{2}(corr_{0,dr}) + u^{2}(corr_{s,dr}) + u^{2}(corr_{rep}) + u^{2}(corr_{rep}) + u^{2}(corr_{s,vf}) + u^{2}(corr_{a,press}) + u^{2}(corr_{temp}) + u^{2}(corr_{volt}) + u^{2}(corr_{adj}) + S_{lnt}^{2} + u^{2}(corr_{NOx,comv}) + u^{2}(corr_{temp}) + u^{2}(cor$$

Uncertainty of mass concentration at oxygen reference concentration

$$u(C, O2 ref) =$$

$$\sqrt{u^{2}(corr_{\mathit{fit}}) + u^{2}(corr_{\mathit{o,dr}}) + u^{2}(corr_{\mathit{s,dr}}) + u^{2}(corr_{\mathit{rep}}) + u^{2}(corr_{\mathit{s,vf}}) + u^{2}(corr_{\mathit{s,vf}}) + u^{2}(corr_{\mathit{s,otr}}) + u^{2}(corr_{\mathit{sott}}) + u^{2}(corr_{\mathit{odd}}) + S_{\mathit{Int}}^{2} + \left(\frac{u^{2}(O_{2,\mathit{meas,dry}})}{(21 - O_{2,\mathit{meas,dry}})^{2}}\right)}$$

u(C,O_{2,ref)} uncertainty associated with the mass concentration at O₂ ref. concentration mg/m³ C,O_{2,ref} mg/m³ mass concentration at O₂ reference concentration O2 measured concentration % volume uncertainty associated to the measured O2 concentration % (relative to O_{2 meas}) Linx Printing Technologies Limited, St Ives, Permit No: B18/14, R/15-6360, v1

Visit 1 of 2015

Page 21 of 22

Uncertainty Estimate For The Measurement Of Total Organic Carbon

Analyser Type/Model		Maihak	(0 = No corre	ation)	
Reference Oxygen %		0		ction)	
		Test 1	Test 2	Test 3	
imit value	mg/m ³	75	75	75	
imit value	ppm	46.7	46.7	46.7	
Measured concentration	ppm	1.8	1.9	1.8	
Measured concentration Concentration at O ₂ ref. concentration	mg/m ³ mg/m ³	2.9 N/A	3.0 N/A	2.9 N/A	
Doncentration at O2 fer. concentration	mg/m	IV/A	IVA	IN/A	
Calibration gas	ppm	74.7	74.7	74.7	
Calibration gas	mg/m ³	120.1	120.1	120.1	
Analyser range	ppm	9.3	9.3	9.3	
Analyser range	mg/m ³	15.0	15.0	15.0	
Damas 4 2 2 5 5 5 5 5 5 5 5					
Correction of Lack of Fit Lack of fit	% range	2.0	2.0	2.0	
Lack of the	u(Corr, _{fit})	0.11	0.11	0.11	
	-(
Corrections of Zero and Span Drift	(*All drift is ca	alculated for	. the residual is	assumed to be	e < 5% u(
Zero Drift	% range	0.00	0.00	0.00	
	u(Corr, _{0dr})	0.00	0.00	0.00	
Span Drift	% range	0.00	0.00	0.00	
	u(Corr, _{sdr})	0.00	0.00	0.00	
Correction of Depostability of Massurement					
Correction of Repeatability of Measurement Repeatability SD at span level	% range	0.0	0.0	0.0	
Not reported)	u(Corr, _{reo})	0.00	0.00	0.00	
	- (· · iep /	2.00		2.30	
Correction of adjustment					
osses in the line	% range	0.27	0.27	0.27	
	u(Corr, _{loss})	0.00	0.00	0.00	
Incertainty of calibration gas	% range	2.0	2.0	2.0	
	u(Corr, _{cal})	0.02	0.02	0.02	
Correction of Influence of Interferents					
N ₂ O	% range			1	
-2-	u(Corr, _{N2O})	0.00	0.00	0.00	
CO_2	% range				
	u(Corr, _{CO2})	0.00	0.00	0.00	
CH₄	% range				
	u(Corr, _{CH4})	0.00	0.00	0.00	
Total of interferent influences $\mu(\Sigma Corrint) = \max_{s} [S_{lnt,p}; S_{lnt,n}]$	% range $u(\Sigma Corr_{int})$	2.50	2.50	2.50	
$J(ZOOTTIR) = IMM[O_{Int,p}, O_{Int,n}]$	u(ZOOII int)	0.16	0.16	0.16	
Correction of Influence Quantities					
Sensitivity to sample volume flow	% range	1.60	1.60	1.60	
	u(Corr, _{flow})	0.09	0.09	0.09	
Sensitivity to atmospheric pressure	% range				
(Not reported)	u(Corr,press)	0.00	0.00	0.00	
Sensitivity to ambient temperature	% range	-2.40	-2.40	-2.40	
	u(Corr, _{temp})	-0.28	-0.28	-0.28	
Sensitivity to electrical voltage	% range	0.50	0.50	0.50	
Not reported)	u(Corr, _{volt})	0.10	0.10	0.10	
Maximum standard uncertainty	u(Corr, _{max})	0.11	0.11	0.11	
5% of maximum standard uncertainty	u(Corr, _{5%})	0.01	0.01	0.01	
•	107		•		
nterferent Concentration Variations	Minimum	Maximum	Value at cal		Units
CH ₄ range	0	10	0	50	mg/m
N ₂ O range	0	12	0	20	mg/m
CO ₂ range Dxygen effect variations	8 Minimum	12 Maximum	0 Value at cal	15 Performance	mg/m
Dxygen effect variations Dxygen effect	Minimum 0	Maximum 20	value at cal	Performance 2	Units mg/m
saygon ondot	1 0	20			mg/m
nfluence Quantitiy Variations					
•	Minimum	Maximum	Value at cal	Performance	Units
Sensitivity to sample volume flow	55	65	60	5	l/h
Sensitivity to atmospheric pressure	99	100	99	1	kPa
Sensitivity to ambient temperature	278	313	288	10	K
Sensitivity to electrical voltage	187	250	230	5	V
Accourament uncertainty	i	Toot 4	Toot 0	Toot 0	
Measurement uncertainty Combined uncertainty	ppm	0.37	Test 2 0.37	Test 3 0.37	
Combined uncertainty	mg/m ³	0.57	0.57	0.59	
Combined uncertainty Combined uncertainty at oxygen reference	mg/m³	0.59	0.59	0.59	
and the second s	mg/m	2.00	2.00	2.30	
Expanded uncertainty expressed with a level of	confidence of 95%, k	=2			
Overall uncertainty	ppm	0.7	0.7	0.7	
Overall uncertainty	mg/m ³	1.2	1.2	1.2	
Overall uncertainty relative to measured value	%	39.9	39.0	40.7	
Overall uncertainty relative to range	%	7.8	7.8	7.8	
Overall uncertainty relative to ELV	%	1.0	1.0	1.0	

The uncertainty evaluation has been carried out in accordance with UKAS requirements.

Page 1 of 22

Client Linx Printing Technologies Limited

Linx House

8 Stocks Bridge Way

St Ives

Cambridgeshire

PE27 5JL

Part 1: Executive Summary

Report for the Periodic Monitoring of Emissions to Air.

Site St Ives

Plant Environmental Chamber Room 1

Sampling Date 4th November 2015 Report Date 2nd December 2015

Job Number EM-2112 Permit Number B18/14

Report Prepared by: Print Harpreet Badwal

MCERTS No. MM03 149 Level 2 TE: 1,2,3,4

Report Approved by: Sign

Print Derek Myers

MCERTS No. MM02 115 Level 2 TE: 1,2,3,4

REC Ltd Environmental Monitoring Unit 19 Bordesley Green Trading Estate Bordesley Green Road

Birmingham B8 1BZ

Tel: 0845 676 9303 Company Registration No 03133832

Contents

Page 1	Part 1: Executive Summary
Page 2	Contents
Page 3	Monitoring Objectives
Page 3	Special Monitoring Requirements
Page 3	Summary Of Methods
Page 4	Summary Of Results
Page 5	Summary Of Results, Exhaust Gases
Page 6	Operating Information
Page 6	Comments On Monitoring Procedures
Page 7	Part 2: Supporting Information
Page 8	Appendix 1
Page 9	Emission Monitoring Procedures and Instrumentation
Page 10	Sampling Personnel
Page 10	Equipment References
Page 11	Appendix 2
Page 12	Preliminary Velocity Traverse Data
Page 13	Exhaust Gases - Continuous Analysis Data
Page 14	Chart 1 - VOC Emissions Data
Page 15	Appendix 3
Page 16	Diagram of Sampling Location
Page 17	Generic Calculations
Page 18	Flow Calculations
Page 19	Concentration Calculation
Page 20	Uncertainty Estimate Calculations - Instrumental Techniques
Page 21	Appendix 4
Page 22	Uncertainty Estimates:- TOC

Visit 1 of 2015

Page 3 of 22

Monitoring Objectives

The monitoring was undertaken to check compliance with authorised emission limits.

All monitoring procedures were carried out to the MCERTS requirements under the REC Environmental Monitoring quality system to ISO 17025: 2005.

Monitoring was undertaken for the listed emissions from the following sampling positions:

Sampling Location	Emission
Environmental Chamber Room 1	Total organic carbon

Special Monitoring Requirements

There were no special requirements for this monitoring campaign.

Summary of Methods

Emission	Method number	Method standard
Gas velocity and volume flow	TPM/01A	BS EN ISO 16911-1:2013
тос	TPM/13	BS EN 12619 : 2013

Page 4 of 22

Summary Of Results

The table presents the atmospheric emissions from the tests undertaken on behalf of Linx Printing Technologies Limited The results were measured from the sample positions downstream of the arrestment plant.

Emission at	Sampling		Emission	Authorised	Uncertainty	Detection	Mass	
St Ives	Time		Result	Limit	+/-	Limit	Emission	
Environmental Chamber Room 1	Date	Start	End	mg/m³*	mg/m ³ *	mg/m³*	mg/m³*	g/h
тос	04/11/15	16:15	17:45	7.6	75	1.2	0.2	3.2

* at reference conditions	Stack Gas Weight	0 °C	Without correction for moisture		
	29.00 Kg/kmol	101.3 kPa	Oxygen	No Correction	%

Where applicable Oxides of nitrogen results are expressed as nitrogen dioxide

TOC results are expressed as total carbon

Throughout Report: * Reference conditions (see above) Nm³ 273 K, 101.3 kPa

** Analysis not required #- UKAS accredited only
ND Non detectable ##- Not Accredited
s - Subcontracted laboratory analysis N/A Not applicable

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a 95% confidence level. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

All tests included in this report are accredited under UKAS and MCERTS accreditation schemes unless otherwise stated.

Opinions and interpretations expressed herein are outside the scope of MCERTS and UKAS accreditation.

1783

Page 5 of 22

Summary Of Results, Exhaust Gases

The table presents the atmospheric emissions from the tests undertaken on behalf of **Linx Printing Technologies Limited**The results were measured from the sample positions downstream of the arrestment plant.

Emiss St I		Sampling Time		Emission Result	Authorised Limit	Uncertainty +/-	Detection Limit	Mass Emission	
Environmental C	Chamber Room 1	Date	Start	End	mg/m³∗	mg/m ³ *	mg/m³*	mg/m³*	g/h
тос	Test 1	04/11/15	16:15	16:45	8.3	75	1.2	0.2	3.5
тос	Test 2	04/11/15	16:45	17:15	11.1	75	1.2	0.2	4.7
тос	Test 3	04/11/15	17:15	17:45	3.4	75	1.2	0.2	1.5

ı	* at ref	Stack Gas Weight	0 °C	Without correction for moisture	
	Conditions	29.00 Kg/kmol	101.3 kPa	Oxygen No Correction %	

Where applicable Oxides of nitrogen results are expressed as nitrogen dioxide

TOC results are expressed as total carbon

Throughout Report: * Reference conditions (see above)

** Analysis not required #- UKAS accredited only
ND Non detectable ##- Not Accredited
s - Subcontracted laboratory analysis N/A Not applicable

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a 95% confidence level. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

All tests included in this report are accredited under UKAS and MCERTS accreditation schemes unless otherwise stated. Opinions and interpretations expressed herein are outside the scope of MCERTS and UKAS accreditation.

Nm³ 273 K, 101.3 kPa

Page 6 of 22

Operating Information

The table below shows details of the operating information on each sampling date for:

Environmental Chamber Room 1

Date	Process type	Process duration	Fuel	Feedstock	Abatement	Load
04/11/2015	Environmental Test Chamber	Continuous	N/A	Methyl Ethyl Ketone	None	1 printer tested at 5°C

There are no CEM's available on this process.

Comments & Monitoring Deviations

A waste gas homogeneity test to BS EN 15259:2007 (MID) is not required:-

The homogeneity test is not applicable to non-combustion processes.

The homogeneity test is not applicable to duct areas less than 1m².

All monitoring was performed in accordance with the relevant procedures.

The sampling location is a vertical duct.

Only one sample port was available on the vertical duct.

The velocity and temperature profile at the sampling location met the requirements of BS EN 13284-1: 2002.

When the results are expressed as non-detected the mass emissions are calculated from the detection limit and therefore they are worst case results.

Page 7 of 22

Part 2: Supporting Information

Report for the Periodic Monitoring of Emissions to Air.

Client Linx Printing Technologies Limited

Site St Ives

Plant Environmental Chamber Room 1

Sampling Date 4th November 2015 Report Date 2nd December 2015

Job Number EM-2112 Permit Number B18/14

Report Prepared by: Print Harpreet Badwal

MCERTS No. MM03 149 Level 2 TE: 1,2,3,4

Report Approved by: Sign

Print Derek Myers

MCERTS No. MM02 115 Level 2 TE: 1,2,3,4

1783

REC Ltd Environmental Monitoring

Unit 19 Bordesley Green Trading Estate Bordesley Green Road Birmingham B8 1BZ

Tel: 0845 676 9303

Company Registration No 03133832

Linx Printing Technologies Limited, St Ives, Permit No: B18/14, R/15-6361, v1

Visit 1 of 2015

Page 8 of 22

Page 9 of 22

Emission Monitoring Procedures And Instrumentation

Gas velocity and temperature

Documented in-house procedure TPM01/A to the main procedural requirements of BS EN ISO 16911-1:2013 Velocity and temperature measurements are performed using a calibrated Pitot tube, a calibrated pressure differential reading device and a calibrated thermocouple. Velocity and possible flow deviation measurements are carried out at selected, representative points in the gas stream.

Total organic carbon

Documented in-house procedure TPM/13 to the main procedural requirements of BS EN 12619:2013. Continuous analysis using probe, sample line and multi range Flame Ionisation Detector (FID) analyser. The analyser is calibrated before and during the tests using certified gas mixtures of nitrogen, oxygen and propane. Sampling points are selected in accordance with the findings of any BS EN 15259 assessment.

Sampling Project Personnel Competency And Expiry Dates

Report prepared by:	Harpreet Badwal	MCERTS No MM03 149	Level 1 -	Level 2 30/09/2018	TE1 30/09/2018	TE2 30/04/2019	TE3 31/10/2019	TE4 31/10/2019
Report authorised by:	Derek Myers	MM02 115	-	30/09/2017	31/05/2018	30/11/2018	30/11/2018	30/11/2018
Team leader:	Harpreet Badwal	MM03 149	-	30/09/2018	30/09/2018	30/04/2019	31/10/2019	31/10/2019
Team leader:	Aidan Wrynne	MM08 921	-	31/05/2017	31/05/2017	31/11/2018	30/11/2017	30/06/2018

Equipment References

Equipment	Reference Number
FID	AQ271
Heated Line	HL40
Heated Filter	Sintered
Stack Thermocouple	PTTS97
Timer / Stopwatch	ST41
Barometer	WS03
Pitot	PT129
Thermometer	TK28
Manometer	PI03

Linx Printing Technologies Limited, St Ives, Permit No: B18/14, R/15-6361, v1

Visit 1 of 2015

Page 11 of 22

Page 12 of 22

Date	04/11/2015
Time	12:02
Pitot Cp	1.01

Barometric pressure	101.0	kPa
Duct static pressure	0.01	kPa
Stack Area	0.031	m ²

Stack Diameter (circular)	0.20	m

Traverse	Traverse	Depth	ΔΡ	Т	Angle	velocity	Traverse	Depth	ΔΡ	Т	Angle	velocity
Point	Line	cm	mmH ₂ O	°C	0	m/s	Line	cm	mmH ₂ O	°C	0	m/s
1	Α						В					
2	Α						В					
3	Α						В					
4	Α						В					
5	Α	5.0	1.0	7	<15	4.0	В					
6	Α	7.1	0.7	7	<15	3.4	В					
7	Α	12.9	0.8	7	<15	3.6	В					
8	Α	15.0	1.2	7	<15	4.4	В					
9	Α						В					
10	Α						В					
11	Α						В					
12	Α						В					

Average Pitot DP	0.93	mmH ₂ O
Average Temperature	280.2	К
Average Velocity	3.9	m/s
Average volumetric flow rate	0.12	m ³ /s at stack conditions
Average volumetric flow rate	0.12	m ³ /s (wet STP)

Sampling plane requirements Re: BS EN 13284-1:2001 5.2

	-			
a	a Angel of gas flow less than 15° with regard to duct axis			
b	No local negative flow		YES	
С	Minimum pitot greater than 5Pa		YES	
d	Ratio of highest to lowest local gas velocity less than 3:1			
	Minimum local gas velocity	3.4		
Maximum local gas velocity 4.4				
Ratio of highest to lowest local gas velocity 1.31				

Visit 1 of 2015

Page 13 of 22

± 2

100

Date	04/11/2015

From	16:15	to	16:45	30 minute mean			
Volatile orgar	nic compounds		vppm, wet	5.14	mg/m³*	8.	26
\ <u></u>							
From	16:45	to	17:15	30 minute mean	l		
Volatile organ	nic compounds		vppm, wet	6.89	mg/m³*	11	.07
_				-			
From	17:15	to	17:45	30 minute mean	l		
Volatile organ	nic compounds		vppm, wet	2.14	mg/m³*	3.	45
_							
Sampling De	tection Limits						
Volatile organ	nic compounds		vppm	0.10	mg/m³*	0.	16
Reference Ga	as Details						
Species			Units	Value	Cylinder Reference	Analyser Range	Uncertainity $k = 2$

Zero And Span Gas Details

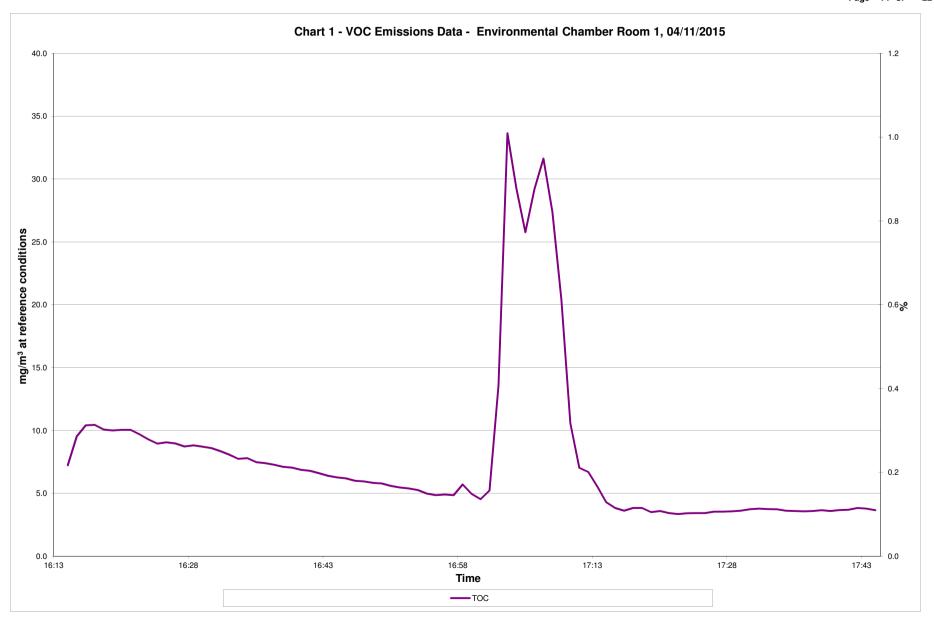
Volatile organic compounds

Nitrogen

Species	units	Initial Time	08:54	Final Time	17:55
		Initial Zero	Initial Span	Final Zero	Final Span
Volatile organic compounds	vppm	0.00	74.70	0.12	75.08

vppm

99.999


74.7

VCK01959

VC59841

Exhaust Gas Continuous Analysis Data

Page 14 of 22

Linx Printing Technologies Limited, St Ives, Permit No: B18/14, R/15-6361, v1

Visit 1 of 2015

Page 15 of 22

Page 16 of 22

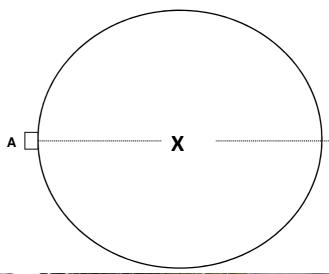

Diagram Of The Sampling Location

Diagram of sampling points across the cross section of the duct (not to scale).

Traverse length =

0.20 m

Point	% of D	Location
		cm
1	50.0	10.0

Page 17 of 22

General Calculations

Stack area:

Area of a circle =
$$\frac{\pi . D^2}{4}$$

D = Diameter (m) $\pi = 3.142$

Pressure conversion:

1mmH2O = 0.00980665 kPa 1mmH2O = 9.80665 Pa 1 mar = 0.1 kPa

Water vapour concentration:

From reference calculations (taken from BS EN 14790):

$$V_{WC(\%)} = \frac{\frac{M_{WC}.V_{mol(std)}}{M_{W}}}{\frac{M_{WC}.V_{mol(std)}}{M_{W}} + V_{m(std)}} \times 100$$

VWC (%) = Water vapour content on wet basis, in volume % (m³ of water vapour in m³ of wet gas)

Vm(std) = Dry gas volume measured, corrected to standard conditions (m³)

mWC = Mass of water collected in the impingers (g)

Mw = Molecular weight of water, 18.01534 rounded to 18 (g/mol)

Vmol(std) = Molar volume of water at standard conditions = 0.0224 (m3/mol)

Gas meter volume at standard conditions (STP)

From reference calculations (taken from BS EN 14790):

$$V_{m(std)} = y_d \times (V_2 - V_1) \times \frac{T_{std}}{T_m} \times \frac{p_m}{p_{std}}$$

Vm(std) = Dry gas meter volume at standard conditions (m³)

yd = Gas meter calibration coefficient

(V2-V1) = Dry gas meter volume at actual conditions (m³)

Tm = Actual Temperature (K)
Tstd = Standard temperature (273 K)

pm = Absolute pressure at the gas meter (kPa) pstd = Standard gas pressure (101.3 kPa)

Isokenetic Ratio (%):

From reference calculations (taken from EA TGN M2):

$$IsokineticRatio(\%) = \frac{Velocity\ at\ the\ sampling\ nozzle}{Velocity\ of\ the\ stack\ gas} \times 100$$

Estimating Measurment Uncertainty

Uncertainty estimates are calculated using the general rule of uncertainty propagation. Guidance is taken from publications including UKAS document M3003 and ISO 20988:2007.

Flow Calculations

Velocity:

From reference calculations (taken from ISO 10780):

$$\overline{v} = KC \sqrt{\frac{T_s \Delta \overline{p}}{p_e M_s}}$$

 $\frac{1}{v}$ = Average velocity (m/s)

 \dot{C} = velocity calculation constant = 129

Ts = Average stack temperature (K)

Ms = Molar mass of gas; assume 29 kg/kmol unless the molar mass is < 27 kg/kmol or > 31 g/kmol

K = Pitot calibration coefficientPe = Absolute gas pressure (kPa)

 $\Delta p = \Delta p$ Average pitot tube pressure differencial (kPa)

Volume flow rate

From reference calculations (taken from ISO 10780):

$$q_{va} = vA$$

qva = Average flow rate (m³/s)

v = v Average velocity (m/s)

A =Stack cross-sectional area (m²)

Volume flow rate corrected for moisture

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{(100 - H_a)}{(100 - H_m)}$$

qm =Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s) Ha = Moisture at actual conditions (%volume)

Hm = Reference moisture (%volume)

Volume flow rate corrected for temperature and pressure

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{\left(T_m p_a\right)}{\left(T_a p_m\right)}$$

qm =Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s)

Ta = Temperature at actual conditions (K)

Tm = Reference Temperatue (K)

pa = Absolute gas pressure at actual conditions (kPa)

pm =Reference pressure (kPa)

Volume flow rate corrected for oxygen

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{\left(20.9 - O_{2,ref}\right)}{\left(20.9 - O_{2,m}\right)}$$

qm =Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s)

O2,m = Actual oxygen concentration (%)

O2,ref = Reference oxygen concentration (%)

Concentration Calculations

Concentration:

From reference calculations (taken from BS EN 13284-1):

$$c = \frac{m}{V}$$

c = Concentration m = Mass of substane V = Volume sampled

Mass Emission

Mass emission= $c \times q_m$

c = Concentration q = Volume flow rate

Concentration corrected for oxygen:

From reference calculations (taken from BS ISO 9096):

$$c_m = c_a \times \frac{20.9 - O_{2,ref}}{20.9 - O_{2,a}}$$

cm = Concentration at reference conditions

ca = Actual concentration
O2, ref = Reference oxygen (%)
O2, a= Actual Oxygen (%)

Concentration corrected for moisture:

From reference calculations (taken from BS ISO 9096):

Convert wet gas to dry gas

$$c_{dry} = c_{wet} \times \frac{100}{100 - H_a}$$

Convert dry gas to wet gas

$$c_{wet} = c_{dry} \times \frac{100 - H_a}{100}$$

cwet = Concentration wet gascdry = Concentration dry gasHa = Water vapour content (%vol)

Conversion of parts per million (ppm) to mg/m³

From reference calculations (taken from EA TGN M2):

$$Concentration(mg/m^3) = \frac{Concentration(ppm) \times molecular\ weight(g)}{molar\ volume(l)\ at\ a\ given\ temperature}$$

molar volume at 273K = 22.4 litres

When Converting TOC

$$Concentration(mg/m^3) = \frac{Concentration(ppm) \times molecular\ weight of\ carbonin\ span\ gas(g)}{molar\ volume(l)\ at\ a\ given\ temperature}$$

Calculation of Uncertainty Estimates - Instrumental Monitoring Techniques

Model equation

 $C_{ppm} = C_{reading} + Corr_{fit} + Corr_{f,dr} + Corr_{s,dr} + Corr_{rep} + Corr_{adj} + \sum_{i=1}^{p} Corr_{inf} + Corr_{inf}$

Corr_{rep} Corr_{adj} Corr_{inf} correction of repeatability of measurement $C_{,ppm}$ concentration in ppm concentration given by analyser C_{NO.reading} correction of adjustment Corr fit correction of lack of fit correction of influence quantities

Corr _{0,dr} correction of zero drift Corr s,dr correction of span drift

Calculation of partial uncertainties

u(Corr_{fit}) $\left(\frac{X_{fit,\max}}{100 \times range}\right)$ Where:

 $X_{\text{fit,max}}$ is the maximum allowable deviation from linearity

Expressed as % of the range and calculated by applying a rectangular probability distribution

max (S_{0,rep}; S_{srep}) u(Corr_{rep}) Where:

is the standard uncertainty at zero level is the standard uncertainty at span level

$$u(Corr_{inf}) = c_{j} \sqrt{\frac{(x_{j,\max} - x_{j,adj})^{2} + (x_{j,\min} - x_{j,adj}) \times (x_{j,\max} - x_{j,adj}) + (x_{j,\min} - x_{j,adj})^{2}}{3}}$$
Where:

is the sensitivity coefficient of the influence quantity is the minimum value of the influence quantity during monitoring is the maximum value of the influence quantity during monitoring is the value of the influence quantity during adjustment

$$u(Corr_{int}) = \frac{c_j}{Int_{j,test}} \sqrt{\frac{Int_{j,max}^2 + Int_{j,min} \times Int_{j,max} + Int_{j,min}^2}{3}}$$

 c_{j} $Int_{j,test}$ is the sensitivity coefficient of the interferent i $= \max \left[S_{Int,p}; S_{Int,n} \right]$ $u(\Sigma Corr_{int})$ is the concentration of the interferent j used to determine c is the minimum value of the interferent j quantity during monitoring is the maximum value of the interferent i quantity during monitoring

 $\mathsf{Int}_{\mathsf{j},\mathsf{adj}}$ is the concentration of the interferent j in the cal gas used to adjust the analyser

 $S_{int,p}$ is the sum of interferents with positive impact is the sum of interferents with negative impact

Combined uncertainty

$$u(C, ppm) =$$

$$\sqrt{u^2 (corr_{\mathit{fit}}) + u^2 (corr_{\mathit{o,dr}}) + u^2 (corr_{\mathit{s,dr}}) + u^2 (corr_{\mathit{rep}}) + u^2 (corr_{\mathit{s,yf}}) + u^2 (corr_{\mathit{a,press}}) + u^2 (corr_{\mathit{temp}}) + u^2 (corr_{\mathit{volt}}) + u^2 (corr_{\mathit{adj}}) + S_{\mathit{hit}}^{-2}}$$

Overall expanded uncertainty (k = 2)

$$U(C_m) = u(C_m) \times k$$

Uncertainty of NOx measurements

$$U(C_{NOx, conv}) = \frac{C_{NOx} \times R \times \eta}{\sqrt{3}}$$

C_{NOx} is the concentration of NOx measured by the analyser is the ratio of NO:Nox in the stack gas is the NOx converter efficiency

Combined uncertainty NOx measurements

$$u(C_{NOx}, _{stack}) =$$

$$\sqrt{u^{2}(corr_{fit}) + u^{2}(corr_{0,dr}) + u^{2}(corr_{s,dr}) + u^{2}(corr_{rep}) + u^{2}(corr_{rep}) + u^{2}(corr_{s,vf}) + u^{2}(corr_{a,press}) + u^{2}(corr_{temp}) + u^{2}(corr_{volt}) + u^{2}(corr_{adj}) + S_{lnt}^{2} + u^{2}(corr_{NOx,comv}) + u^{2}(corr_{temp}) + u^{2}(cor$$

Uncertainty of mass concentration at oxygen reference concentration

$$u(C, O2 ref) =$$

$$\sqrt{u^{2}(corr_{\mathit{fit}}) + u^{2}(corr_{\mathit{o,dr}}) + u^{2}(corr_{\mathit{s,dr}}) + u^{2}(corr_{\mathit{rep}}) + u^{2}(corr_{\mathit{s,vf}}) + u^{2}(corr_{\mathit{s,vf}}) + u^{2}(corr_{\mathit{s,otr}}) + u^{2}(corr_{\mathit{sott}}) + u^{2}(corr_{\mathit{odd}}) + S_{\mathit{Int}}^{2} + \left(\frac{u^{2}(O_{2,\mathit{meas,dry}})}{(21 - O_{2,\mathit{meas,dry}})^{2}}\right)}$$

u(C,O_{2,ref)} uncertainty associated with the mass concentration at O₂ ref. concentration mg/m³ C,O_{2,ref} mg/m³ mass concentration at O₂ reference concentration O2 measured concentration % volume uncertainty associated to the measured O2 concentration % (relative to O_{2 meas}) Linx Printing Technologies Limited, St Ives, Permit No: B18/14, R/15-6361, v1

Visit 1 of 2015

Page 21 of 22

APPENDIX 4

Uncertainty Estimate For The Measurement Of Total Organic Carbon

	Uncertainty	Estimate	For The I	Measureme	ent Of I
Analyser Type/Model	Sick I	Maihak			
Reference Oxygen %		0	(0 = No corre	ction)	
	İ	Test 1	Test 2	Test 3	
imit value	mg/m ³	75	75	75	
imit value	ppm	46.7	46.7	46.7	
Measured concentration	ppm	5.1	6.9	2.1	
Measured concentration	mg/m ³	8.3	11.1	3.4	
Concentration at O ₂ ref. concentration	mg/m³	N/A	N/A	N/A	
Calibration gas	ppm	74.7	74.7	74.7	
Calibration gas	mg/m ³	120.1	120.1	120.1	
Analyser range	ppm	9.3	9.3	9.3	
Analyser range	mg/m ³	15.0	15.0	15.0	
Correction of Lack of Fit					
ack of fit	% range	2.0	2.0	2.0	
	u(Corr, _{fit})	0.11	0.11	0.11	
Corrections of Zero and Span Drift	(* All drift in a	alaulatad far	the regidual is	annumed to be	. F0//m
Zero Drift	% range	0.00	0.00	0.00) < 5% u(III
2010 21111	u(Corr, _{Odr})	0.00	0.00	0.00	
Span Drift	% range	0.00	0.00	0.00	
	u(Corr, _{sdr})	0.00	0.00	0.00	
Correction of Repeatability of Measurement	1 0/				
Repeatability SD at span level	% range	0.0	0.0	0.0	
Not reported)	u(Corr, _{rep})	0.00	0.00	0.00	
Correction of adjustment					
osses in the line	% range	0.27	0.27	0.27	
	u(Corr, _{loss})	0.01	0.01	0.00	
Incertainty of calibration gas	% range	2.0	2.0	2.0	
	u(Corr, _{cal})	0.05	0.07	0.02	
Correction of Influence of Interferents			1		
N₂O	% range u(Corr, _{N2O})	0.00	0.00	0.00	
CO ₂	% range	0.00	0.00	0.00	
502	u(Corr, _{CO2})	0.00	0.00	0.00	
CH ₄	% range	0.00	0.00	0.00	
•	u(Corr, _{CH4})	0.00	0.00	0.00	
Total of interferent influences	% range	2.50	2.50	2.50	
$u(\Sigma Corrint) = \max[S_{Int,p}; S_{Int,n}]$	$u(\Sigma Corr_{int})$	0.16	0.16	0.16	
Correction of Influence Quantities	0/ 20000	1.00	1.00	1.00	
Sensitivity to sample volume flow	% range u(Corr, _{flow})	1.60 0.09	1.60 0.09	1.60 0.09	
Sensitivity to atmospheric pressure	% range	0.03	0.03	0.03	
(Not reported)	u(Corr, _{press})	0.00	0.00	0.00	
Sensitivity to ambient temperature	% range	-2.40	-2.40	-2.40	
,	u(Corr, _{temp})	-0.28	-0.28	-0.28	
Sensitivity to electrical voltage	% range	0.50	0.50	0.50	
Not reported)	u(Corr, _{volt})	0.10	0.10	0.10	
	1 (0)				
Maximum standard uncertainty	u(Corr, _{max})	0.11	0.11	0.11	
5% of maximum standard uncertainty	u(Corr,5%)	0.01	0.01	0.01	
nterferent Concentration Variations	Minimum	Maximum	Value at cal	Performance	Units
CH ₄ range	0	10	0	50	mg/m ³
N ₂ O range	0	0	0	20	mg/m ³
CO₂ range	8	12	0	15	mg/m ³
Oxygen effect variations	Minimum	Maximum	Value at cal	Performance	Units
Oxygen effect	0	20	0	2	mg/m ³
nfluence Quantitiv Variations					
nfluence Quantitiy Variations	Minimum	Maximum	Value at cal	Performance	Units
Sensitivity to sample volume flow	55	65	60	5	I/h
Sensitivity to atmospheric pressure	99	100	99	1	kPa
Sensitivity to ambient temperature	278	313	288	10	K
Sensitivity to electrical voltage	187	250	230	5	V
·					
Measurement uncertainty		Test 1	Test 2	Test 3	
Combined uncertainty	ppm	0.37	0.37	0.37	
	ma/m ³	0.59	0.60	0.59	
			0.60	0.59	
	mg/m ³	0.59			
Combined uncertainty at oxygen reference	mg/m ³				
Combined uncertainty at oxygen reference Expanded uncertainty expressed with a level of con	mg/m ³ fidence of 95%, k	=2		0.7	
Combined uncertainty at oxygen reference Expanded uncertainty expressed with a level of con Overall uncertainty	mg/m ³ fidence of 95%, k		0.7	0.7	
Combined uncertainty Combined uncertainty at oxygen reference Expanded uncertainty expressed with a level of con Overall uncertainty Overall uncertainty Overall uncertainty relative to measured value	mg/m ³ fidence of 95%, k	=2 0.7	0.7		
Combined uncertainty at oxygen reference Expanded uncertainty expressed with a level of con Overall uncertainty Overall uncertainty	fidence of 95%, k ppm mg/m³	=2 0.7 1.2	0.7	1.2	

The uncertainty evaluation has been carried out in accordance with UKAS requirements.

Page 1 of 25

Client Linx Printing Technologies Limited

Linx House

8 Stocks Bridge Way

St Ives

Cambridgeshire

PE27 5JL

Part 1: Executive Summary

Report for the Periodic Monitoring of Emissions to Air.

Site St Ives

Plant Wet Test Stack 1 (Room Extract)
Sampling Date 2nd & 3rd November 2015

Report Date 7th December 2015

Job Number EM-2112 Permit Number B18/14

Report Prepared by: Print Harpreet Badwal

MCERTS No. MM03 149 Level 2 TE: 1,2,3,4

Report Approved by: Sign

Print Derek Myers

MCERTS No. MM02 115 Level 2 TE: 1,2,3,4

REC Ltd Environmental Monitoring

Unit 19 Bordesley Green Trading Estate Bordesley Green Road Birmingham B8 1BZ

Tel: 0845 676 9303 Company Registration No 03133832

Contents

Page 1	Part 1: Executive Summary					
Page 2	Contents					
Page 3	Monitoring Objectives					
Page 3	Special Monitoring Requirements					
Page 3	Summary Of Methods					
Page 4	Summary Of Results					
Page 5	Summary Of Results, Exhaust Gases					
Page 6	Operating Information					
Page 6	Comments On Monitoring Procedures					
Page 7	Part 2: Supporting Information					
Page 8	Appendix 1					
Page 9	Emission Monitoring Procedures and Instrumentation					
Page 10	Sampling Personnel					
Page 10	Equipment References					
Page 11	Appendix 2					
Page 12	Preliminary Velocity Traverse Data					
Page 13	Exhaust Gases - Continuous Analysis Data					
Page 14	Exhaust Gases - Continuous Analysis Data, Continued					
Page 15	Chart 1 - VOC Emissions Data, 02/11/2015					
Page 16	Chart 2 - VOC Emissions Data Cont, 03/11/2015					
Page 17	Appendix 3					
Page 18	Diagram of Sampling Location					
Page 19	Generic Calculations					
Page 20	Flow Calculations					
Page 21	Concentration Calculation					
Page 22	Uncertainty Estimate Calculations - Instrumental Techniques					
Page 23	Appendix 4					
Page 24	Uncertainty Estimates:- TOC					
Page 25	Uncertainty Estimates:- TOC					

Visit 1 of 2015

Page 3 of 25

Monitoring Objectives

The monitoring was undertaken to check compliance with authorised emission limits.

All monitoring procedures were carried out to the MCERTS requirements under the REC Environmental Monitoring quality system to ISO 17025: 2005.

Monitoring was undertaken for the listed emissions from the following sampling positions:

Sampling Location	Emission
Wet Test Stack 1 (Room Extract)	Total organic carbon

Special Monitoring Requirements

There were no special requirements for this monitoring campaign.

Summary of Methods

Emission	Method number	Method standard
Gas velocity and volume flow	TPM/01A	BS EN ISO 16911-1:2013
тос	TPM/13	BS EN 12619 : 2013

Page 4 of 25

Summary Of Results

The table presents the atmospheric emissions from the tests undertaken on behalf of Linx Printing Technologies Limited The results were measured from the sample positions downstream of the arrestment plant.

Emission at	Sampling			Emission	Authorised	Uncertainty	Detection	Mass
St Ives	Time		Result	Limit	+/-	Limit	Emission	
Wet Test Stack 1 (Room Extract)	Date	Start	End	mg/m³∗	mg/m³*	mg/m³∗	mg/m³∗	g/h
тос	02/11/15	16:50	17:50	30.8	75	1.3	0.2	131.7
тос	03/11/15	08:30	09:00	17.5	75	1.2	0.2	74.9

* at reference conditions	Stack Gas Weight	0 °C	Without correction for moisture		
	29.00 Kg/kmol	101.3 kPa	Oxygen No Correction	%	

Where applicable Oxides of nitrogen results are expressed as nitrogen dioxide

TOC results are expressed as total carbon

Throughout Report: * Reference conditions (see above)

** Analysis not required #- UKAS accredited only
ND Non detectable ##- Not Accredited
s - Subcontracted laboratory analysis N/A Not applicable

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a 95% confidence level. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

All tests included in this report are accredited under UKAS and MCERTS accreditation schemes unless otherwise stated.

Opinions and interpretations expressed herein are outside the scope of MCERTS and UKAS accreditation.

Nm³ 273 K, 101.3 kPa

1783

Nm³ 273 K, 101.3 kPa

Page 5 of 25

Summary Of Results, Exhaust Gases

The table presents the atmospheric emissions from the tests undertaken on behalf of Linx Printing Technologies Limited The results were measured from the sample positions downstream of the arrestment plant.

Emiss	sion at	Sampling		Emission	Authorised	Uncertainty	Detection	Mass	
St I	lves	Time		Result	Limit	+/-	Limit	Emission	
Wet Test Stack	1 (Room Extract)	Date	Start	End	mg/m³*	mg/m ³ *	mg/m³*	mg/m ³ *	g/h
TOC	Test 1	02/11/15	16:50	17:20	41.5	75	1.4	0.2	177.5
тос	Test 2	02/11/15	17:20	17:50	20.1	75	1.2	0.2	85.9
тос	Test 3	03/11/15	08:30	09:00	17.5	75	1.2	0.2	74.9

* at ref	Stack Gas Weight	0 °C	Without correction for moisture		
Conditions	29.00 Kg/kmol	101.3 kPa	Oxygen No Correction %		

Where applicable Oxides of nitrogen results are expressed as nitrogen dioxide

TOC results are expressed as total carbon

Throughout Report: * Reference conditions (see above)

** Analysis not required # - UKAS accredited only
ND Non detectable ## - Not Accredited
s - Subcontracted laboratory analysis N/A Not applicable

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a 95% confidence level. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

All tests included in this report are accredited under UKAS and MCERTS accreditation schemes unless otherwise stated. Opinions and interpretations expressed herein are outside the scope of MCERTS and UKAS accreditation.

Page 6 of 25

Operating Information

The table below shows details of the operating information on each sampling date for:

Wet Test Stack 1 (Room Extract)

Date	Process type	Process duration	Fuel	Feedstock	Abatement	Load
2nd & 3rd November 2015	LEV From Ink Printer Testing Room	Continuous	Natural Gas	Methyl - Ethyl Ketone, Acetone & Ethanol	Bag Filter	Normal Operation

There are no CEM's available on this process.

Comments & Monitoring Deviations

A waste gas homogeneity test to BS EN 15259:2007 (MID) is not required: The homogeneity test is not applicable to non-combustion processes. The homogeneity test is not applicable to duct areas less than 1m².

All monitoring was performed in accordance with the relevant procedures.

The sampling location is a vertical rectangular duct.

The velocity and temperature profile at the sampling location met the requirements of BS EN 13284-1: 2002.

When the results are expressed as non-detected the mass emissions are calculated from the detection limit and therefore they are worst case results.

Page 7 of 25

Part 2: Supporting Information

Report for the Periodic Monitoring of Emissions to Air.

Client Linx Printing Technologies Limited

Site St Ives

Plant Wet Test Stack 1 (Room Extract)

Sampling Date 2nd & 3rd November 2015
Report Date 7th December 2015

Report Date 7th December 500 Number EM-2112

Job Number EM-211 Permit Number B18/14

Report Prepared by: Print Harpreet Badwal

MCERTS No. MM03 149 Level 2 TE: 1,2,3,4

Report Approved by: Sign

Print Derek Myers

MCERTS No. MM02 115 Level 2 TE: 1,2,3,4

REC Ltd Environmental Monitoring

Unit 19 Bordesley Green Trading Estate Bordesley Green Road Birmingham B8 1BZ

Tel: 0845 676 9303

Company Registration No 03133832

Linx Printing Technologies Limited, St Ives, Permit No: B18/14, R/15-6362, v1

Visit 1 of 2015

Page 8 of 25

APPENDIX 1

Page 9 of 25

Emission Monitoring Procedures And Instrumentation

Gas velocity and temperature

Documented in-house procedure TPM01/A to the main procedural requirements of BS EN ISO 16911-1:2013 Velocity and temperature measurements are performed using a calibrated Pitot tube, a calibrated pressure differential reading device and a calibrated thermocouple. Velocity and possible flow deviation measurements are carried out at selected, representative points in the gas stream.

Total organic carbon

Documented in-house procedure TPM/13 to the main procedural requirements of BS EN 12619:2013. Continuous analysis using probe, sample line and multi range Flame Ionisation Detector (FID) analyser. The analyser is calibrated before and during the tests using certified gas mixtures of nitrogen, oxygen and propane. Sampling points are selected in accordance with the findings of any BS EN 15259 assessment.

Sampling Project Personnel Competency And Expiry Dates

Report prepared by:	Harpreet Badwal	MCERTS No MM03 149	Level 1 -	Level 2 30/09/2018	TE1 30/09/2018	TE2 30/04/2019	TE3 31/10/2019	TE4 31/10/2019	
Report authorised by:	Derek Myers	MM02 115	-	30/09/2017	31/05/2018	30/11/2018	30/11/2018	30/11/2018	
Team leader:	Harpreet Badwal	MM03 149	-	30/09/2018	30/09/2018	30/04/2019	31/10/2019	31/10/2019	
Team leader:	Aidan Wrynne	MM08 921	-	31/05/2017	31/05/2017	31/11/2018	30/11/2017	30/06/2018	

Equipment References

Equipment	Reference Number
FID	AQ271
Heated Line	HL40
Heated Filter	Sintered
Stack Thermocouple	PTTS97
Timer / Stopwatch	ST41
Barometer	WS03
Pitot	PT129
Thermometer	TK28
Manometer	PI03

Linx Printing Technologies Limited, St Ives, Permit No: B18/14, R/15-6362, v1

Visit 1 of 2015

Page 11 of 25

APPENDIX 2

Page 12 of 25

Date	02/11/2015
Time	16:43
Pitot Cp	1.01

Barometric pressure	102.3	kPa
Duct static pressure	0.00	kPa
Stack Area	0.665	m²

Stack Depth (rectangular)	0.70	m
Stack Depth (rectangular)	0.95	m

Traverse	Traverse	Depth	ΔΡ	T	Angle	velocity	Traverse	Depth	ΔΡ	Т	Angle	velocity
Point	Line	cm	mmH ₂ O	°C	0	m/s	Line	cm	mmH ₂ O	°C	0	m/s
1	Α						В					
2	Α	5.0	0.1	14	<15	1.3	В					
3	Α	10.5	0.1	14	<15	1.3	В					
4	Α	17.5	0.1	14	<15	1.3	В					
5	Α	24.5	0.3	14	<15	2.2	В					
6	Α	31.5	0.2	14	<15	1.8	В					
7	Α	38.5	0.2	14	<15	1.8	В					
8	Α	45.5	0.1	14	<15	1.3	В					
9	Α	52.5	0.3	14	<15	2.2	В					
10	Α	59.5	0.5	14	<15	2.9	В					
11	Α	65.0	0.4	14	<15	2.6	В					
12	Α				_		В					

Average Pitot DP	0.22	mmH₂O
Average Temperature	287.2	К
Average Velocity	1.9	m/s
Average volumetric flow rate	1.24	m ³ /s at stack conditions
Average volumetric flow rate	1.19	m ³ /s (wet STP)

Sampling plane requirements Re: BS EN 13284-1:2001 5.2

а	Angel of gas flow less than 15° with regard to duct axis			
b	b No local negative flow			
С	Minimum pitot greater than 5Pa			
d	Ratio of highest to lowest local gas velocity less than 3:1			
	Minimum local gas velocity	1.3		
	Maximum local gas velocity 2.9			
	Ratio of highest to lowest local gas velocity 2.24			

Visit 1 of 2015

Page 13 of 25

Date 02/11/2015

From	16:50	to	17:20	30 minute mean		
Volatile organ	ic compounds		vppm, wet	25.80	mg/m³*	41.46
	•				<u> </u>	
_						
From	17:20	to	17:50	30 minute mean		
Volatile organ	ic compounds		vppm, wet	12.48	mg/m³*	20.06
_						
Sampling Dot	action Limite					

Sampling Detection Limits

1 0				
Volatile organic compounds	vppm	0.10	mg/m³*	0.16

Reference Gas Details

Species	Units	Value	Cylinder Reference	Analyser Range	Uncertainity $k = 2$
Nitrogen	%	99.999	VCK01959	-	± 2
Volatile organic compounds	vppm	74.7	VC59841	10	± 2

Zero And Span Gas Details

Species	units	Initial Time	15:23	Final Time	18:08
		Initial Zero	Initial Span	Final Zero	Final Span
Volatile organic compounds	vppm	0.00	74.70	-0.39	74.10

Exhaust Gases Continuous Analysis Data

Visit 1 of 2015

Page 14 of 25

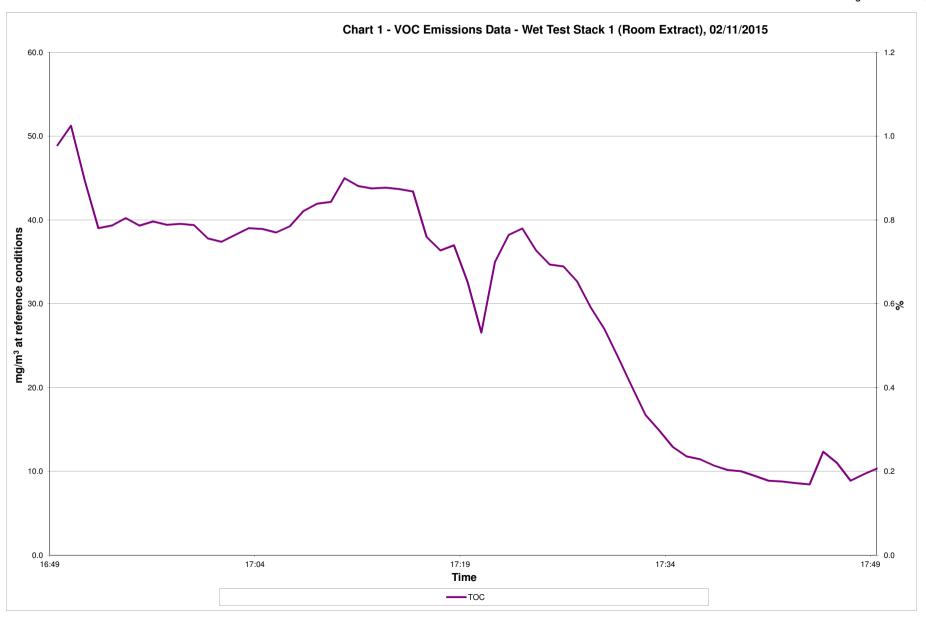
Date 03/11/2015

From	08:30	to	09:00	30 minute mean	l	
Volatile organic	c compounds		vppm, wet	10.88	mg/m³*	17.48

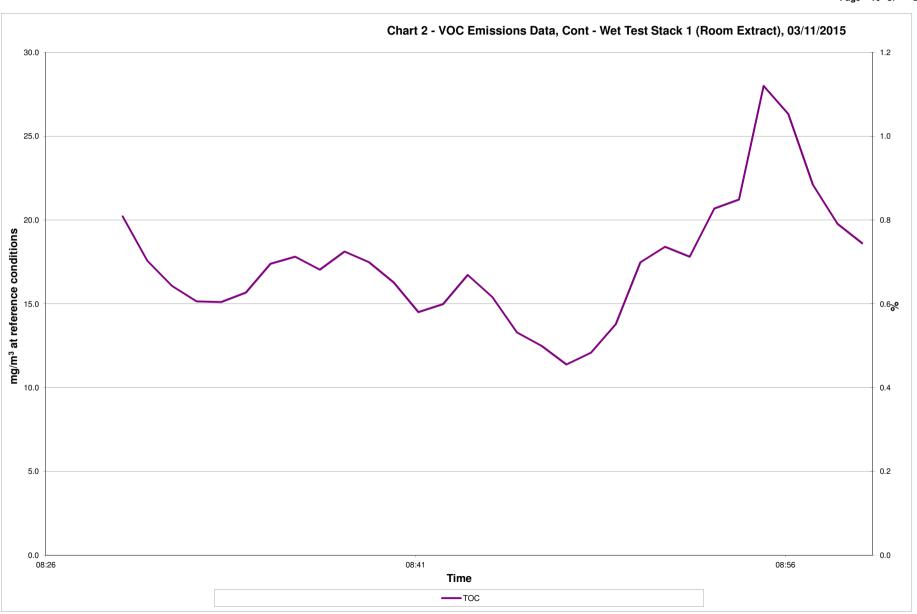
Sampling Detection Limits

Volatile organic compounds	vppm	0.10	mg/m³*	0.16

Reference Gas Details


Species	Units	Value	Cylinder Reference	Analyser Range	Uncertainity $k = 2$
Nitrogen	%	99.999	VCK01959	-	± 2
Volatile organic compounds	vppm	74.7	VC59841	10	± 2

Zero And Span Gas Details


Species	units	Initial Time	08:19	Final Time	10:10
		Initial Zero	Initial Span	Final Zero	Final Span
Volatile organic compounds	vppm	0.00	74.70	-0.21	74.14

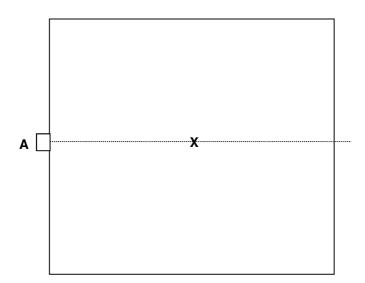
Exhaust Gases Continuous Analysis Data, Continued

Page 16 of 25

Linx Printing Technologies Limited, St Ives, Permit No: B18/14, R/15-6362, v1

Visit 1 of 2015

Page 17 of 25


APPENDIX 3


Page 18 of 25

Diagram Of The Sampling Location

Diagram of sampling points across the cross section of the duct (not to scale).

Traverse length = 0.70 m x 0.95m

Page 19 of 25

General Calculations

Stack area:

Area of a circle =
$$\frac{\pi . D^2}{4}$$

D = Diameter (m) $\pi = 3.142$

Pressure conversion:

1mmH2O = 0.00980665 kPa 1mmH2O = 9.80665 Pa 1 mar = 0.1 kPa

Water vapour concentration:

From reference calculations (taken from BS EN 14790):

$$V_{WC(\%)} = \frac{\frac{M_{WC}.V_{mol(std)}}{M_{W}}}{\frac{M_{WC}.V_{mol(std)}}{M_{W}} + V_{m(std)}} \times 100$$

VWC (%) = Water vapour content on wet basis, in volume % (m³ of water vapour in m³ of wet gas)

Vm(std) = Dry gas volume measured, corrected to standard conditions (m³)

mWC = Mass of water collected in the impingers (g)

Mw = Molecular weight of water, 18.01534 rounded to 18 (g/mol)

Vmol(std) = Molar volume of water at standard conditions = 0.0224 (m3/mol)

Gas meter volume at standard conditions (STP)

From reference calculations (taken from BS EN 14790):

$$V_{m(std)} = y_d \times (V_2 - V_1) \times \frac{T_{std}}{T_m} \times \frac{p_m}{p_{std}}$$

Vm(std) = Dry gas meter volume at standard conditions (m³)

yd = Gas meter calibration coefficient

(V2-V1) = Dry gas meter volume at actual conditions (m³)

Tm = Actual Temperature (K)
Tstd = Standard temperature (273 K)

pm = Absolute pressure at the gas meter (kPa) pstd = Standard gas pressure (101.3 kPa)

Isokenetic Ratio (%):

From reference calculations (taken from EA TGN M2):

$$IsokineticRatio(\%) = \frac{Velocity\ at\ the\ sampling\ nozzle}{Velocity\ of\ the\ stack\ gas} \times 100$$

Estimating Measurment Uncertainty

Uncertainty estimates are calculated using the general rule of uncertainty propagation. Guidance is taken from publications including UKAS document M3003 and ISO 20988:2007.

Flow Calculations

Velocity:

From reference calculations (taken from ISO 10780):

$$\overline{v} = KC \sqrt{\frac{T_s \Delta \overline{p}}{p_e M_s}}$$

 $\frac{1}{v}$ = Average velocity (m/s)

 \dot{C} = velocity calculation constant = 129

Ts = Average stack temperature (K)

Ms = Molar mass of gas; assume 29 kg/kmol unless the molar mass is < 27 kg/kmol or > 31 g/kmol

K = Pitot calibration coefficientPe = Absolute gas pressure (kPa)

 $\Delta p = \Delta p$ Average pitot tube pressure differencial (kPa)

Volume flow rate

From reference calculations (taken from ISO 10780):

$$q_{va} = vA$$

qva = Average flow rate (m³/s)

v = v Average velocity (m/s)

A =Stack cross-sectional area (m²)

Volume flow rate corrected for moisture

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{(100 - H_a)}{(100 - H_m)}$$

qm =Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s) Ha = Moisture at actual conditions (%volume)

Hm = Reference moisture (%volume)

Volume flow rate corrected for temperature and pressure

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{\left(T_m p_a\right)}{\left(T_a p_m\right)}$$

qm =Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s)

Ta = Temperature at actual conditions (K)

Tm = Reference Temperatue (K)

pa = Absolute gas pressure at actual conditions (kPa)

pm =Reference pressure (kPa)

Volume flow rate corrected for oxygen

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{\left(20.9 - O_{2,ref}\right)}{\left(20.9 - O_{2,m}\right)}$$

qm =Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s)

O2,m = Actual oxygen concentration (%)

O2,ref = Reference oxygen concentration (%)

Concentration Calculations

Concentration:

From reference calculations (taken from BS EN 13284-1):

$$c = \frac{m}{V}$$

c = Concentration m = Mass of substane V = Volume sampled

Mass Emission

Mass emission= $c \times q_m$

c = Concentration q = Volume flow rate

Concentration corrected for oxygen:

From reference calculations (taken from BS ISO 9096):

$$c_m = c_a \times \frac{20.9 - O_{2,ref}}{20.9 - O_{2,a}}$$

cm = Concentration at reference conditions

ca = Actual concentration
O2, ref = Reference oxygen (%)
O2, a= Actual Oxygen (%)

Concentration corrected for moisture:

From reference calculations (taken from BS ISO 9096):

Convert wet gas to dry gas

$$c_{dry} = c_{wet} \times \frac{100}{100 - H_a}$$

Convert dry gas to wet gas

$$c_{wet} = c_{dry} \times \frac{100 - H_a}{100}$$

cwet = Concentration wet gascdry = Concentration dry gasHa = Water vapour content (%vol)

Conversion of parts per million (ppm) to mg/m³

From reference calculations (taken from EA TGN M2):

$$Concentration(mg/m^3) = \frac{Concentration(ppm) \times molecular\ weight(g)}{molar\ volume(l)\ at\ a\ given\ temperature}$$

molar volume at 273K = 22.4 litres

When Converting TOC

$$Concentration(mg/m^3) = \frac{Concentration(ppm) \times molecular\ weight of\ carbonin\ span\ gas(g)}{molar\ volume(l)\ at\ a\ given\ temperature}$$

Calculation of Uncertainty Estimates - Instrumental Monitoring Techniques

Model equation

 $C_{ppm} = C_{reading} + Corr_{fit} + Corr_{f,dr} + Corr_{s,dr} + Corr_{rep} + Corr_{adj} + \sum_{i=1}^{p} Corr_{inf} + Corr_{inf}$

Corr_{rep} Corr_{adj} Corr_{inf} correction of repeatability of measurement $C_{,ppm}$ concentration in ppm concentration given by analyser C_{NO.reading} correction of adjustment correction of lack of fit correction of influence quantities

Corr fit Corr _{0,dr} correction of zero drift

Corr s,dr correction of span drift

Calculation of partial uncertainties

u(Corr_{fit}) $\left(\frac{X_{fit,\max}}{100 \times range}\right)$

Where:

 $X_{\text{fit,max}}$ is the maximum allowable deviation from linearity

Expressed as % of the range and calculated by applying a rectangular probability distribution

u(Corr_{0.dr})

max (S_{0,rep}; S_{srep}) u(Corr_{rep})

Where:

is the standard uncertainty at zero level is the standard uncertainty at span level

u(Corr_{adj}) $u(Corr_{loss}) + u(Corr_{cal})$

 $u(Corr_{loss})$ is the uncertainty due to losses in sample line is the uncertainty due to losses in sample line is the concentration of sample loss at span level

 $u(Corr_{cal})$ is the expanded uncertainty of the calibration gas

 $= c_{j} \sqrt{\frac{(x_{j,\max} - x_{j,adj})^{2} + (x_{j,\min} - x_{j,adj}) \times (x_{j,\max} - x_{j,adj}) + (x_{j,\min} - x_{j,adj})^{2}}{3}}$ u(Corr inf)

is the sensitivity coefficient of the influence quantity

is the minimum value of the influence quantity during monitoring is the maximum value of the influence quantity during monitoring is the value of the influence quantity during adjustment

 $= \frac{c_{j}}{Int_{j,lest}} \sqrt{\frac{Int_{j,max}^{2} + Int_{j,min} \times Int_{j,max} + Int_{j,min}^{2}}{3}}$

 $= \max \left[S_{Int,p}; S_{Int,n} \right]$

is the sensitivity coefficient of the interferent i

 c_{j} Int_{j,test} is the concentration of the interferent j used to determine c is the minimum value of the interferent j quantity during monitoring is the maximum value of the interferent i quantity during monitoring

 $\mathsf{Int}_{\mathsf{j},\mathsf{adj}}$ is the concentration of the interferent j in the cal gas used to adjust the analyse

 $S_{int,p}$ is the sum of interferents with positive impact is the sum of interferents with negative impact

Combined uncertainty

 $u(\Sigma Corr_{int})$

 $u(C_{,ppm})$

$$\sqrt{u^2(corr_{fit}) + u^2(corr_{o,dr}) + u^2(corr_{s,dr}) + u^2(corr_{ep}) + u^2(corr_{s,yf}) + u^2(corr_{d,press}) + u^2(corr_{epp}) + u^2(corr_{odi}) + S_{hit}^{-2}} + u^2(corr_{epp}) + u^2(corr_{odi}) + S_{hit}^{-2}$$

Overall expanded uncertainty (k = 2)

 $U(C_m) = u(C_m) \times k$

Uncertainty of NOx measurements

is the concentration of NOx measured by the analyser is the ratio of NO:Nox in the stack gas

C_{NOx} is the NOx converter efficiency

Combined uncertainty NOx measurements

$$\sqrt{u^{2}(corr_{fit}) + u^{2}(corr_{0,dr}) + u^{2}(corr_{s,dr}) + u^{2}(corr_{rep}) + u^{2}(corr_{rep}) + u^{2}(corr_{s,vf}) + u^{2}(corr_{a,press}) + u^{2}(corr_{temp}) + u^{2}(corr_{volt}) + u^{2}(corr_{odj}) + S_{lnt}^{2} + u^{2}(corr_{NOx,conv})}$$

Uncertainty of mass concentration at oxygen reference concentration

u(C, O2 ref)

$$\sqrt{u^{2}(corr_{fit}) + u^{2}(corr_{o,dr}) + u^{2}(corr_{s,dr}) + u^{2}(corr_{rep}) + u^{2}(corr_{s,vf}) + u^{2}(corr_{s,vf}) + u^{2}(corr_{temp}) + u^{2}(corr_{temp}) + u^{2}(corr_{o,dt}) + u^{2}(corr_{odt}) + S_{lnt}^{2}} + \left(\frac{u^{2}(O_{2,meas,dry})}{(21 - O_{2,meas,dry})^{2}}\right) + u^{2}(corr_{temp}) + u^{2}(corr_{temp}) + u^{2}(corr_{o,dr}) + u^{2}(corr_{o,dr}) + u^{2}(corr_{o,dr}) + u^{2}(corr_{temp}) $

u(C,O_{2,ref)} uncertainty associated with the mass concentration at O₂ ref. concentration mg/m³ C,O_{2,ref} mg/m³ mass concentration at O₂ reference concentration O2 measured concentration % volume

uncertainty associated to the measured O2 concentration

% (relative to O_{2 meas})

Linx Printing Technologies Limited, St Ives, Permit No: B18/14, R/15-6362, v1

Visit 1 of 2015

Page 23 of 25

APPENDIX 4

Uncertainty Estimate For The Measurement Of Total Organic Carbon

U	ncertainty	Estimate	For The N	<i>l</i> leasureme	ent Of Tota
Analyser Type/Model	Sick I	Maihak	1		
Reference Oxygen %		0	(0 = No corre	ction)	
		Test 1	Test 2]	
Limit value	mg/m ³	75	75		
Limit value	ppm	46.7	46.7		
Measured concentration Measured concentration	ppm mg/m ³	25.8 41.5	12.5 20.1	1	
Concentration at O ₂ ref. concentration	mg/m ³	N/A	N/A	1	
2	mg/m			1	
Calibration gas	ppm	74.7	74.7	Ì	
Calibration gas	mg/m ³	120.1	120.1]	
Analyser range	ppm	9.3	9.3		
Analyser range	mg/m ³	15.0	15.0	1	
O-marking of Lock of Eit					
Correction of Lack of Fit Lack of fit	% range	2.0	2.0	1	
Lack of lit	u(Corr, _{fit})	0.11	0.11	†	
	G(GG.1,111)	0	0	1	
Corrections of Zero and Span Drift	(*All drift is c	alculated for	the residual is	s assumed to be	e < 5% u(max))
Zero Drift	% range	0.00	0.00]	, ,
	u(Corr, _{0dr})	0.00	0.00]	
Span Drift	% range	0.00	0.00		
	u(Corr, _{sdr})	0.00	0.00]	
Correction of Popostobility of Massacrament					
Correction of Repeatability of Measurement Repeatability SD at span level	% range	0.0	0.0	ì	
(Not reported)	u(Corr,ren)	0.00	0.00	1	
(spanner)	. (= - · · rep/	5.00	0.00	1	
Correction of adjustment					
losses in the line	% range	0.09	0.09]	
	u(Corr, _{loss})	0.01	0.01		
Uncertainty of calibration gas	% range	2.0	2.0		
	u(Corr, _{cal})	0.26	0.12]	
Correction of Influence of Interferents					
N ₂ O	% range			1	
1420	u(Corr, _{N2O})	0.00	0.00		
CO ₂	% range	0.00	0.00	1	
	u(Corr, _{CO2})	0.00	0.00	1	
CH ₄	% range			1	
	u(Corr, _{CH4})	0.00	0.00]	
Total of interferent influences	% range	2.50	2.50		
$u(\Sigma Corrint) = \max[S_{lnt,p}; S_{lnt,n}]$	u(ΣCorr _{int})	0.16	0.16	J	
Correction of Influence Quantities					
Sensitivity to sample volume flow	% range	1.60	1.60	1	
constantly to cample volume now	u(Corr, _{flow})	0.09	0.09	1	
Sensitivity to atmospheric pressure	% range			1	
(Not reported)	u(Corr,press)	0.00	0.00	1	
Sensitivity to ambient temperature	% range	-2.40	-2.40	1	
	u(Corr, _{temp})	-0.28	-0.28]	
Sensitivity to electrical voltage	% range	0.50	0.50		
(Not reported)	u(Corr, _{volt})	0.10	0.10]	
Hide	1	0.00	0.00	1	
riido		0.00	0.00	1	
Maximum standard uncertainty	u(Corr,max)	0.26	0.12	1	
5% of maximum standard uncertainty	u(Corr,5%)	0.01	0.01]	
Interferent Concentration Variations	Minimum	Maximum	Value of ool	Performance	Unito
CH ₄ range	Minimum 0	Maximum 10	Value at cal 0	Performance 50	Units ma/m ³
N ₂ O range	0	0	0	20	mg/m ³
CO ₂ range	8	12	0	15	mg/m ³
Oxygen effect variations	Minimum	Maximum	Value at cal	Performance	Units
Oxygen effect	0	20	0	2	mg/m ³
Influence Quantitiy Variations	1 841 1	Mari	1 V-1. · ·	Dowl	11.5
Consitivity to comple volume flow	Minimum	Maximum	Value at cal	Performance	Units
Sensitivity to sample volume flow Sensitivity to atmospheric pressure	55 99	65 100	60 99	5 1	l/h kPa
Sensitivity to atmospheric pressure Sensitivity to ambient temperature	278	313	288	10	KFa
Sensitivity to electrical voltage	187	250	230	5	V
,					
Measurement uncertainty		Test 1	Test 2]	
Combined uncertainty	ppm	0.45	0.39	1	
Combined uncertainty	mg/m ³	0.72	0.62	1	
Combined uncertainty at oxygen reference	mg/m ³	0.72	0.62	J	
Evnanded uncertainty evarenced with a level of a cold	longo of OE9/	-0			
Expanded uncertainty expressed with a level of confid			0.0	1	
Overall uncertainty Overall uncertainty	ppm mg/m ³	0.9 1.4	0.8 1.2	1	
Overall uncertainty Overall uncertainty relative to measured value	mg/m	3.5	6.2	1	
	%	9.6	8.3	1	
Overall uncertainty relative to measured value Overall uncertainty relative to range Overall uncertainty relative to ELV				1	

The uncertainty evaluation has been carried out in accordance with UKAS requirements.

Uncertainty Estimate For The Measurement Of Total Organic Carbon

Analyser Type/Model	Sick	Maihak	
Reference Oxygen %		0	(0 = No correction)
		Test 1	
Limit value	mg/m ³	75	
Limit value	ppm	46.7	
Measured concentration	ppm	10.9	

Limit value	ppm	46.7
Measured concentration	ppm	10.9
Measured concentration	mg/m ³	17.5
Concentration at O ₂ ref. concentration	mg/m ³	N/A
Calibration gas	ppm	74.7
Calibration gas	mg/m ³	120.1

Calibration gas	mg/m ³	120.1
Analyser range	ppm	9.3
Analyser range	mg/m ³	15.0

Correction of Lack of Fit		
Lack of fit	% range	2.0
	u(Corr,fit)	0.11

Corrections of Zero and Span Drift	(*All drift is o	alculated for
Zero Drift	% range	0.00
	u(Corr, _{0dr})	0.00
Span Drift	% range	0.00
	u(Corr.cdr)	0.00

or ∴ the residual is assumed to be < 5% u(max))

Zero Driit	% range	0.00
	u(Corr, _{0dr})	0.00
Span Drift	% range	0.00
	u(Corr, _{sdr})	0.00
Correction of Repeatability of Measurement		

Correction of repeatability of weasurement		
Repeatability SD at span level	% range	0.0
(Not reported)	u(Corr, _{rep})	0.00

Correction of adjustment

losses in the line	% range	0.15
	u(Corr, _{loss})	0.01
Uncertainty of calibration gas	% range	2.0
	u(Corr,cal)	0.11

Correction of Influence of Interferents

N ₂ O	% range	
	u(Corr, _{N2O})	0.00
CO ₂	% range	
	u(Corr, _{CO2})	0.00
CH₄	% range	
	u(Corr, _{CH4})	0.00
Total of interferent influences	% range	2.50
$u(\Sigma Corrint) = \max[S_{Int,p}; S_{Int,n}]$	$u(\Sigma Corr_{int})$	0.16

Correction of Influence Quantities

Sensitivity to sample volume flow	% range	1.60
	u(Corr,flow)	0.09
Sensitivity to atmospheric pressure	% range	
(Not reported)	u(Corr,press)	0.00
Sensitivity to ambient temperature	% range	-2.40
	u(Corr, _{temp})	-0.28
Sensitivity to electrical voltage	% range	0.50
(Not reported)	u(Corr, _{volt})	0.10

Maximum standard uncertainty	u(Corr, _{max})	0.11
5% of maximum standard uncertainty	u(Corr,5%)	0.01

Interferent Concentration Variations	Minimum	Maximum	Value at cal	Performance	Units
CH₄ range	0	10	0	50	mg/m ³
N ₂ O range	0	0	0	20	mg/m ³
CO ₂ range	8	12	0	15	mg/m ³
Oxygen effect variations	Minimum	Maximum	Value at cal	Performance	Units
Oxygen effect	0	20	0	2	mg/m ³

Influence Quantitiy Variations

	Minimum	Maximum	Value at cal	Performance	Units
Sensitivity to sample volume flow	55	65	60	5	l/h
Sensitivity to atmospheric pressure	99	100	99	1	kPa
Sensitivity to ambient temperature	278	313	288	10	K
Sensitivity to electrical voltage	187	250	230	5	V

Measurement uncertainty		Test 1
Combined uncertainty	ppm	0.38
Combined uncertainty	mg/m ³	0.61
Combined uncertainty at oxygen reference	ma/m ³	0.61

Expanded uncertainty expressed with a level of confidence of 95%, k=2

Overall uncertainty	ppm	0.8
Overall uncertainty	mg/m ³	1.2
Overall uncertainty relative to measured value	%	7.0
Overall uncertainty relative to range	%	8.2
Overall uncertainty relative to ELV	%	1.0

The uncertainty evaluation has been carried out in accordance with UKAS requirements.

Page 1 of 25

Client Linx Printing Technologies Limited

Linx House

8 Stocks Bridge Way

St Ives

Cambridgeshire

PE27 5JL

Part 1: Executive Summary

Report for the Periodic Monitoring of Emissions to Air.

Site St Ives

Plant Wet Test Stack 2 (Individual Test Rig Extract)

Sampling Date 2nd & 3rd November 2015

Report Date 7th December 2015

Job Number EM-2112 Permit Number B18/14

Report Prepared by: Print Harpreet Badwal

MCERTS No. MM03 149 Level 2 TE: 1,2,3,4

Report Approved by: Sign

Print Derek Myers

MCERTS No. MM02 115 Level 2 TE: 1,2,3,4

REC Ltd Environmental Monitoring

Unit 19 Bordesley Green Trading Estate Bordesley Green Road Birmingham B8 1BZ

Tel: 0845 676 9303 Company Registration No 03133832

Contents

Page 1	Part 1: Executive Summary
Page 2	Contents
Page 3	Monitoring Objectives
Page 3	Special Monitoring Requirements
Page 3	Summary Of Methods
Page 4	Summary Of Results
Page 5	Summary Of Results, Exhaust Gases
Page 6	Operating Information
Page 6	Comments On Monitoring Procedures
Page 7	Part 2: Supporting Information
Page 8	Appendix 1
Page 9	Emission Monitoring Procedures and Instrumentation
Page 10	Sampling Personnel
Page 10	Equipment References
Page 11	Appendix 2
Page 12	Preliminary Velocity Traverse Data
Page 13	Exhaust Gases - Continuous Analysis Data
Page 14	Exhaust Gases - Continuous Analysis Data, Continued
Page 15	Chart 1 - VOCs Emissions Data, 02/11/2015
Page 16	Chart 2 - VOCs Emissions Data Cont, 03/11/2015
Page 17	Appendix 3
Page 18	Diagram of Sampling Location
Page 19	Generic Calculations
Page 20	Flow Calculations
Page 21	Concentration Calculation
Page 22	Uncertainty Estimate Calculations - Instrumental Techniques
Page 23	Appendix 4
Page 24	Uncertainty Estimates:- TOC
Page 25	Uncertainty Estimates:- TOC

Visit 1 of 2015

Page 3 of 25

Monitoring Objectives

The monitoring was undertaken to check compliance with authorised emission limits.

All monitoring procedures were carried out to the MCERTS requirements under the REC Environmental Monitoring quality system to ISO 17025: 2005.

Monitoring was undertaken for the listed emissions from the following sampling positions:

Sampling Location	Emission
Wet Test Stack 2 (Individual Test Rig Extract)	Total organic carbon

Special Monitoring Requirements

There were no special requirements for this monitoring campaign.

Summary of Methods

Emission	Method number	Method standard
Gas velocity and volume flow	TPM/01A	BS EN ISO 16911-1:2013
тос	TPM/13	BS EN 12619 : 2013

Page 4 of 25

Summary Of Results

The table presents the atmospheric emissions from the tests undertaken on behalf of The results were measured from the sample positions downstream of the arrestment plant.

Linx Printing Technologies Limited

Emission at	Sampling		Emission	Authorised	Uncertainty	Detection	Mass	
St Ives	Time		Result	Limit	+/-	Limit	Emission	
Wet Test Stack 2 (Individual Test Rig Extract)	Date	Start	End	mg/m³*	mg/m³*	mg/m³*	mg/m³*	g/h
тос	02/11/15	16:00	16:30	446.4	75	9.0	0.2	1360.6
TOC	03/11/15	09:05	10:05	521.5	75	10.5	0.2	1589.5

* at reference conditions	Stack Gas Weight	0 °C	Without correction for moisture	
	29.00 Kg/kmol	101.3 kPa	Oxygen No Correction	%

Where applicable Oxides of nitrogen results are expressed as nitrogen dioxide

TOC results are expressed as total carbon

Throughout Report: * Reference conditions (see above) Nm³ 273 K, 101.3 kPa

** Analysis not required #- UKAS accredited only
ND Non detectable ##- Not Accredited
s - Subcontracted laboratory analysis N/A Not applicable

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a 95% confidence level. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

All tests included in this report are accredited under UKAS and MCERTS accreditation schemes unless otherwise stated.

Opinions and interpretations expressed herein are outside the scope of MCERTS and UKAS accreditation.

Page 5 of 25

Summary Of Results, Exhaust Gases

The table presents the atmospheric emissions from the tests undertaken on behalf of The results were measured from the sample positions downstream of the arrestment plant.

Linx Printing Technologies Limited

	Emission at		Sampling		Emission	Authorised	Uncertainty	Detection	Mass
	St Ives		Time		Result	Limit	+/-	Limit	Emission
Wet Test Stack	c 2 (Individual Test Rig Extract)	Date	Start	End	mg/m ³ *	mg/m ³ *	mg/m³*	mg/m³*	g/h
TOC	Test 1	02/11/15	16:00	16:30	446.4	75	9.0	0.2	1360.6
TOC	Test 2	03/11/15	09:05	09:35	504.2	75	10.2	0.2	1536.7
TOC	Test 3	03/11/15	09:35	10:05	538.8	75	10.9	0.2	1642.2

* at ref	Stack Gas Weight	0 °C	Without correction for moisture
Conditions	29.00 Kg/kmol	101.3 kPa	Oxygen No Correction %

Where applicable Oxides of nitrogen results are expressed as nitrogen dioxide

TOC results are expressed as total carbon

Throughout Report: * Reference conditions (see above) Nm³ 273 K, 101.3 kPa

** Analysis not required #- UKAS accredited only
ND Non detectable ##- Not Accredited
s - Subcontracted laboratory analysis N/A Not applicable

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a 95% confidence level. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

All tests included in this report are accredited under UKAS and MCERTS accreditation schemes unless otherwise stated.

Opinions and interpretations expressed herein are outside the scope of MCERTS and UKAS accreditation.

Page 6 of 25

Operating Information

The table below shows details of the operating information on each sampling date for: Wet Test Stack 2 (Individual Test Rig Extract)

Date	Process type	Process duration	Fuel	Feedstock	Abatement	Load
2nd & 3rd	Ink Printer Testing	Continuous	N/A	Methyl - Ethyl	None	Normal
November 2015	Individual Rig Extraction			Ketone & Acetone		Operation

There are no CEM's available on this process.

Comments & Monitoring Deviations

A waste gas homogeneity test to BS EN 15259:2007 (MID) is not required: The homogeneity test is not applicable to non-combustion processes. The homogeneity test is not applicable to duct areas less than 1m².

All monitoring was performed in accordance with the relevant procedures.

The sampling location is a vertical duct.

The velocity and temperature profile at the sampling location met the requirements of BS EN 13284-1: 2002.

When the results are expressed as non-detected the mass emissions are calculated from the detection limit and therefore they are worst case results.

Part 2: Supporting Information

Report for the Periodic Monitoring of Emissions to Air.

Client Linx Printing Technologies Limited

Site St Ives

Plant Wet Test Stack 2 (Individual Test Rig Extract)

Sampling Date 2nd & 3rd November 2015

Report Date 7th December 2015

Job Number EM-2112 Permit Number B18/14

Report Prepared by: Print Harpreet Badwal

MCERTS No. MM03 149 Level 2 TE: 1,2,3,4

Report Approved by: Sign

Print Derek Myers

MCERTS No. MM02 115 Level 2 TE: 1,2,3,4

1783

REC Ltd Environmental Monitoring

Unit 19 Bordesley Green Trading Estate Bordesley Green Road Birmingham B8 1BZ

Tel: 0845 676 9303

Company Registration No 03133832

Linx Printing Technologies Limited, St Ives, Permit No: B18/14, R/15-6363, v1

Visit 1 of 2015

Page 8 of 25

APPENDIX 1

Page 9 of 25

Emission Monitoring Procedures And Instrumentation

Gas velocity and temperature

Documented in-house procedure TPM01/A to the main procedural requirements of BS EN ISO 16911-1:2013 Velocity and temperature measurements are performed using a calibrated Pitot tube, a calibrated pressure differential reading device and a calibrated thermocouple. Velocity and possible flow deviation measurements are carried out at selected, representative points in the gas stream.

Total organic carbon

Documented in-house procedure TPM/13 to the main procedural requirements of BS EN 12619:2013. Continuous analysis using probe, sample line and multi range Flame Ionisation Detector (FID) analyser. The analyser is calibrated before and during the tests using certified gas mixtures of nitrogen, oxygen and propane. Sampling points are selected in accordance with the findings of any BS EN 15259 assessment.

Sampling Project Personnel Competency And Expiry Dates

Report prepared by:	Harpreet Badwal	MCERTS No MM03 149	Level 1	Level 2 30/09/2018	TE1 30/09/2018	TE2 30/04/2019	TE3 31/10/2019	TE4 31/10/2019
Report authorised by:	Derek Myers	MM02 115	-	30/09/2017	31/05/2018	30/11/2018	30/11/2018	30/11/2018
Team leader:	Harpreet Badwal	MM03 149	-	30/09/2018	30/09/2018	30/04/2019	31/10/2019	31/10/2019
Team leader:	Aidan Wrynne	MM08 921	_	31/05/2017	31/05/2017	31/11/2018	30/11/2017	30/06/2018

Equipment References

Equipment	Reference Number
FID	AQ271
Heated Line	HL40
Heated Filter	Sintered
Stack Thermocouple	PTTS97
Timer / Stopwatch	ST41
Barometer	WS03
Pitot	PT129
Thermometer	TK19
Manometer	PI03

Linx Printing Technologies Limited, St Ives, Permit No: B18/14, R/15-6363, v1

Visit 1 of 2015

Page 11 of 25

APPENDIX 2

Page 12 of 25

-	02/11/2015
Time	16:00
Pitot Cp	1.01

Barometric pressure	102.3	kPa
Duct static pressure	-1.02	kPa
Stack Area	0.071	m²

Stack Diameter (circular)	0.30	m
		_

Traverse	Traverse	Depth	ΔΡ	Т	Angle	velocity	Traverse	Depth	ΔΡ	Т	Angle	velocity
Point	Line	cm	mmH ₂ O	°C	0	m/s	Line	cm	mmH ₂ O	°C	0	m/s
1	Α						В					
2	Α						В					
3	Α	5.0	8.8	17	<15	12.0	В	5.0	7.4	17	<15	11.1
4	Α	5.3	12.2	17	<15	14.2	В	5.3	8.3	17	<15	11.7
5	Α	7.5	12.4	17	<15	14.3	В	7.5	8.1	17	<15	11.5
6	Α	10.7	11.0	17	<15	13.5	В	10.7	8.9	17	<15	12.1
7	Α	19.3	10.1	17	<15	12.9	В	19.3	10.5	17	<15	13.1
8	Α	22.5	8.8	17	<15	12.0	В	22.5	12.1	17	<15	14.1
9	Α	24.7	8.1	17	<15	11.5	В	24.7	13.5	17	<15	14.9
10	Α	25.0	7.3	17	<15	11.0	В	25.0	11.6	17	<15	13.8
11	Α						В					
12	Α						В					

Average Pitot DP	9.85	mmH ₂ O
Average Temperature	290.2	К
Average Velocity	12.7	m/s
Average volumetric flow rate	0.90	m ³ /s at stack conditions
Average volumetric flow rate	0.85	m ³ /s (wet STP)

Sampling plane requirements Re: BS EN 13284-1:2001 5.2

Angel of gas flow less than 15° with regard to duct axis		YES	
No local negative flow			
Minimum pitot greater than 5Pa			
Ratio of highest to lowest local gas velocity less than 3:1			
Minimum local gas velocity	11.0		
Maximum local gas velocity	14.9		
Ratio of highest to lowest local gas velocity	1.35		
	No local negative flow Minimum pitot greater than 5Pa Ratio of highest to lowest local gas velocity less than 3:1 Minimum local gas velocity Maximum local gas velocity	No local negative flow Minimum pitot greater than 5Pa Ratio of highest to lowest local gas velocity less than 3:1 Minimum local gas velocity 11.0 Maximum local gas velocity 14.9	

Visit 1 of 2015

Page 13 of 25

Date 02/11/2015

From	16:00	to	16:30	30 minute mean		
Volatile organi	c compounds		vppm, wet	277.78	mg/m³*	446.44

Sampling Detection Limits

Volatile organic compounds	vppm	0.10	mg/m³*	0.16

Reference Gas Details

Species	Units	Value	Cylinder Reference	Analyser Range	Uncertainity $k = 2$
Nitrogen	%	99.999	VCK01959	-	± 2
Volatile organic compounds	vppm	74.7	VC59841	10	± 2

Zero And Span Gas Details

Species	units	Initial Time	15:23	Final Time	18:08
		Initial Zero	Initial Span	Final Zero	Final Span
Volatile organic compounds	vppm	0.00	74.70	-0.39	74.10

Exhaust Gases Continuous Analysis Data

Visit 1 of 2015

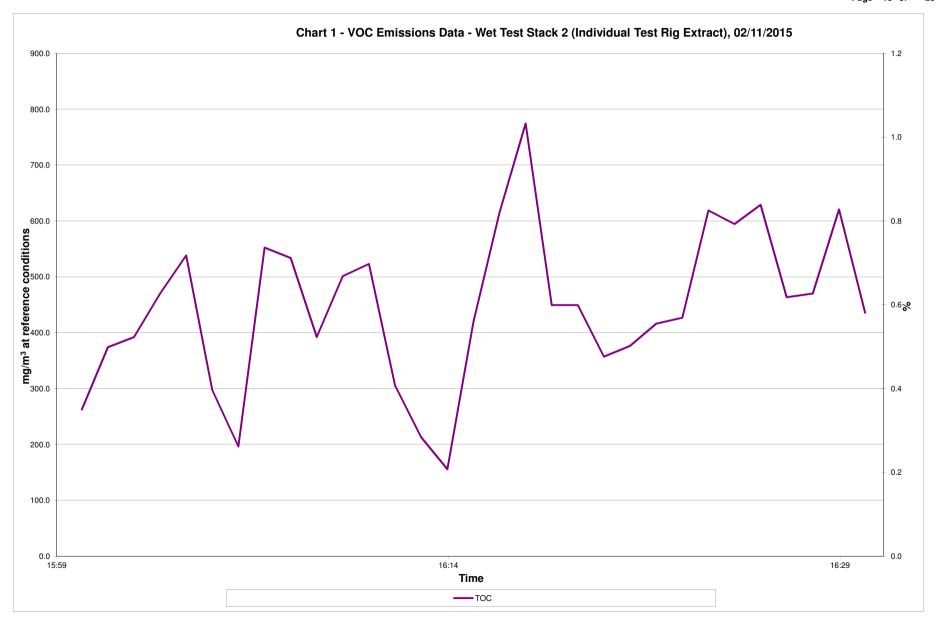
Page 14 of 25

Date 03/11/2015

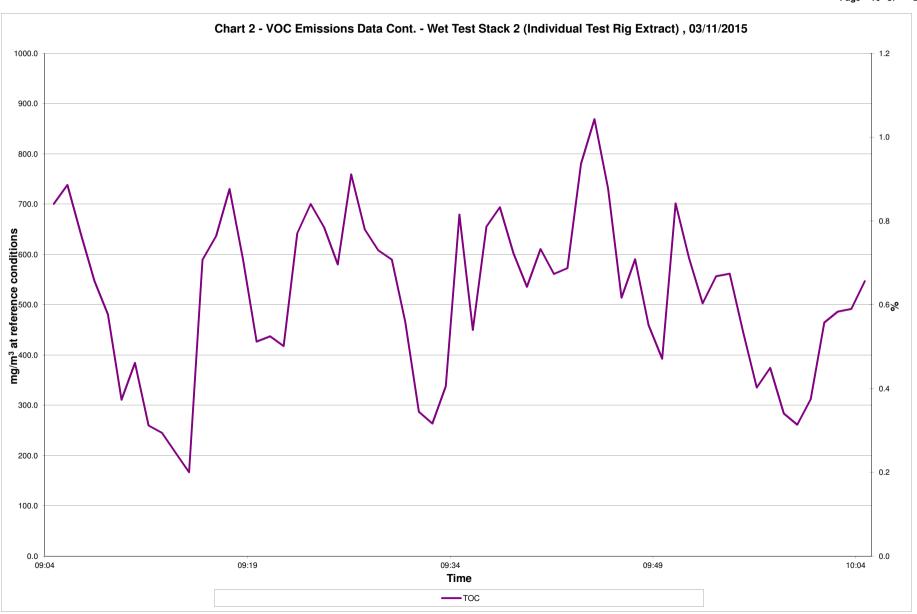
From	09:05	to	09:35	30 minute mean		
Volatile organi	c compounds		vppm, wet	313.73	mg/m³*	504.21
From	09:35	to	10:05	30 minute mean		
Volatile organi	c compounds		vppm, wet	335.28	mg/m³*	538.84
_						

Sampling Detection Limits

- Camping 2 steetier 2 mile				
Volatile organic compounds	vppm	0.10	mg/m³*	0.16


Reference Gas Details

Species	Units	Value	Cylinder Reference	Analyser Range	Uncertainity $k = 2$
Nitrogen	%	99.999	VCK01959	1	± 2
Volatile organic compounds	vppm	74.7	VC59841	10	± 2


Zero And Span Gas Details

Species	units	Initial Time	16:05	Final Time	10:10
		Initial Zero	Initial Span	Final Zero	Final Span
Volatile organic compounds	vppm	0.00	74.70	-0.21	74.14

Exhaust Gases Continuous Analysis Data, Continued

Page 16 of 25

Linx Printing Technologies Limited, St Ives, Permit No: B18/14, R/15-6363, v1

Visit 1 of 2015

Page 17 of 25

APPENDIX 3

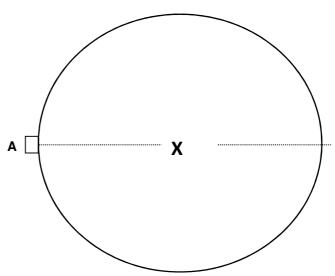

Diagram Of The Sampling Location

Diagram of sampling points across the cross section of the duct (not to scale).

Traverse length =

	m

Point	% of D	Location
		cm
1	50.0	15.0

Page 19 of 25

General Calculations

Stack area:

Area of a circle =
$$\frac{\pi . D^2}{4}$$

D = Diameter (m) $\pi = 3.142$

Pressure conversion:

1mmH2O = 0.00980665 kPa 1mmH2O = 9.80665 Pa 1 mar = 0.1 kPa

Water vapour concentration:

From reference calculations (taken from BS EN 14790):

$$V_{WC(\%)} = \frac{\frac{M_{WC}.V_{mol(std)}}{M_{W}}}{\frac{M_{WC}.V_{mol(std)}}{M_{W}} + V_{m(std)}} \times 100$$

VWC (%) = Water vapour content on wet basis, in volume % (m³ of water vapour in m³ of wet gas)

Vm(std) = Dry gas volume measured, corrected to standard conditions (m³)

mWC = Mass of water collected in the impingers (g)

Mw = Molecular weight of water, 18.01534 rounded to 18 (g/mol)

Vmol(std) = Molar volume of water at standard conditions = 0.0224 (m3/mol)

Gas meter volume at standard conditions (STP)

From reference calculations (taken from BS EN 14790):

$$V_{m(std)} = y_d \times (V_2 - V_1) \times \frac{T_{std}}{T_m} \times \frac{p_m}{p_{std}}$$

Vm(std) = Dry gas meter volume at standard conditions (m³)

yd = Gas meter calibration coefficient

(V2-V1) = Dry gas meter volume at actual conditions (m³)

Tm = Actual Temperature (K)
Tstd = Standard temperature (273 K)

pm = Absolute pressure at the gas meter (kPa) pstd = Standard gas pressure (101.3 kPa)

Isokenetic Ratio (%):

From reference calculations (taken from EA TGN M2):

$$IsokineticRatio(\%) = \frac{Velocity\ at\ the\ sampling\ nozzle}{Velocity\ of\ the\ stack\ gas} \times 100$$

Estimating Measurment Uncertainty

Uncertainty estimates are calculated using the general rule of uncertainty propagation. Guidance is taken from publications including UKAS document M3003 and ISO 20988:2007.

Flow Calculations

Velocity:

From reference calculations (taken from ISO 10780):

$$\overline{v} = KC \sqrt{\frac{T_s \Delta \overline{p}}{p_e M_s}}$$

 $\frac{1}{v}$ = Average velocity (m/s)

C = velocity calculation constant = 129

Ts = Average stack temperature (K)

Ms = Molar mass of gas; assume 29 kg/kmol unless the molar mass is < 27 kg/kmol or > 31 g/kmol

K = Pitot calibration coefficientPe = Absolute gas pressure (kPa)

 $\Delta p = \Delta p$ Average pitot tube pressure differencial (kPa)

Volume flow rate

From reference calculations (taken from ISO 10780):

$$q_{va} = vA$$

qva = Average flow rate (m³/s)

v = v Average velocity (m/s)

A =Stack cross-sectional area (m²)

Volume flow rate corrected for moisture

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{(100 - H_a)}{(100 - H_m)}$$

qm =Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s) Ha = Moisture at actual conditions (%volume)

Hm = Reference moisture (%volume)

Volume flow rate corrected for temperature and pressure

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{\left(T_m p_a\right)}{\left(T_a p_m\right)}$$

qm =Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s)

Ta = Temperature at actual conditions (K)

Tm = Reference Temperatue (K)

pa = Absolute gas pressure at actual conditions (kPa)

pm =Reference pressure (kPa)

Volume flow rate corrected for oxygen

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{\left(20.9 - O_{2,ref}\right)}{\left(20.9 - O_{2,m}\right)}$$

qm =Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s)

O2,m = Actual oxygen concentration (%)

O2,ref = Reference oxygen concentration (%)

Concentration Calculations

Concentration:

From reference calculations (taken from BS EN 13284-1):

$$c = \frac{m}{V}$$

c = Concentration m = Mass of substane V = Volume sampled

Mass Emission

Mass emission= $c \times q_m$

c = Concentration q = Volume flow rate

Concentration corrected for oxygen:

From reference calculations (taken from BS ISO 9096):

$$c_m = c_a \times \frac{20.9 - O_{2,ref}}{20.9 - O_{2,a}}$$

cm = Concentration at reference conditions

ca = Actual concentration
O2, ref = Reference oxygen (%)
O2, a= Actual Oxygen (%)

Concentration corrected for moisture:

From reference calculations (taken from BS ISO 9096):

Convert wet gas to dry gas

$$c_{dry} = c_{wet} \times \frac{100}{100 - H_a}$$

Convert dry gas to wet gas

$$c_{wet} = c_{dry} \times \frac{100 - H_a}{100}$$

cwet = Concentration wet gascdry = Concentration dry gasHa = Water vapour content (%vol)

Conversion of parts per million (ppm) to mg/m³

From reference calculations (taken from EA TGN M2):

$$Concentration(mg/m^3) = \frac{Concentration(ppm) \times molecular\ weight(g)}{molar\ volume(l)\ at\ a\ given\ temperature}$$

molar volume at 273K = 22.4 litres

When Converting TOC

 $Concentration(mg/m^3) = \frac{Concentration(ppm) \times molecular\ weight of\ carbonin\ span\ gas(g)}{molar\ volume(l)\ at\ a\ given\ temperature}$

Calculation of Uncertainty Estimates - Instrumental Monitoring Techniques

Model equation

 $C_{ppm} = C_{reading} + Corr_{fit} + Corr_{f,dr} + Corr_{s,dr} + Corr_{rep} + Corr_{adj} + \sum_{i=1}^{p} Corr_{inf} + Corr_{inf}$

correction of repeatability of measurement $C_{,ppm}$ concentration in ppm

Corr_{rep} Corr_{adj} Corr_{inf} concentration given by analyser C_{NO.reading} correction of adjustment Corr fit correction of lack of fit correction of influence quantities Corr _{0,dr} correction of zero drift Corr s,dr correction of span drift

Calculation of partial uncertainties

u(Corr_{fit}) $\left(\frac{X_{fit,\max}}{100 \times range}\right)$ Where:

 $X_{\text{fit,max}}$ is the maximum allowable deviation from linearity

Expressed as % of the range and calculated by applying a rectangular probability distribution

u(Corr_{0.dr})

max (S_{0,rep}; S_{srep}) u(Corr_{rep}) Where:

is the standard uncertainty at zero level is the standard uncertainty at span level

u(Corr_{adj}) $u(Corr_{loss}) + u(Corr_{cal})$ $u(Corr_{loss})$ is the uncertainty due to losses in sample line is the uncertainty due to losses in sample line

is the concentration of sample loss at span level $u(Corr_{cal})$ is the expanded uncertainty of the calibration gas

 $= c_{j} \sqrt{\frac{(x_{j,\max} - x_{j,adj})^{2} + (x_{j,\min} - x_{j,adj}) \times (x_{j,\max} - x_{j,adj}) + (x_{j,\min} - x_{j,adj})^{2}}{3}}$ u(Corr inf)

is the sensitivity coefficient of the influence quantity

is the minimum value of the influence quantity during monitoring is the maximum value of the influence quantity during monitoring is the value of the influence quantity during adjustment

 $= \frac{c_{j}}{Int_{j,lest}} \sqrt{\frac{Int_{j,max}^{2} + Int_{j,min} \times Int_{j,max} + Int_{j,min}^{2}}{3}}$

 c_{j} $Int_{j,test}$ is the sensitivity coefficient of the interferent i $= \max \left[S_{Int,p}; S_{Int,n} \right]$ $u(\Sigma Corr_{int})$ is the concentration of the interferent j used to determine c

is the minimum value of the interferent j quantity during monitoring is the maximum value of the interferent i quantity during monitoring

 $\mathsf{Int}_{\mathsf{j},\mathsf{adj}}$ is the concentration of the interferent j in the cal gas used to adjust the analyse $S_{int,p}$

is the sum of interferents with positive impact is the sum of interferents with negative impact

Combined uncertainty

 $u(C_{,ppm})$

$$\sqrt{u^2(corr_{fit}) + u^2(corr_{o,dr}) + u^2(corr_{s,dr}) + u^2(corr_{ep}) + u^2(corr_{s,yf}) + u^2(corr_{a,press}) + u^2(corr_{temp}) + u^2(corr_{volt}) + u^2(corr_{adj}) + S_{hit}}$$

Overall expanded uncertainty (k = 2)

 $U(C_m) = u(C_m) \times k$

Uncertainty of NOx measurements

C_{NOx} is the concentration of NOx measured by the analyser is the ratio of NO:Nox in the stack gas

is the NOx converter efficiency

Combined uncertainty NOx measurements

$$\sqrt{u^{2}(corr_{fit}) + u^{2}(corr_{o,dr}) + u^{2}(corr_{s,dr}) + u^{2}(corr_{rep}) + u^{2}(corr_{rep}) + u^{2}(corr_{s,vf}) + u^{2}(corr_{a,press}) + u^{2}(corr_{temp}) + u^{2}(corr_{volt}) + u^{2}(corr_{odj}) + S_{lnt}^{2} + u^{2}(corr_{NOx,comv}) + u^{2}(corr_{temp}) + u^{2}(cor$$

Uncertainty of mass concentration at oxygen reference concentration

u(C, O2 ref)

$$\sqrt{u^{2}(corr_{fit}) + u^{2}(corr_{o,dr}) + u^{2}(corr_{s,dr}) + u^{2}(corr_{rep}) + u^{2}(corr_{s,vf}) + u^{2}(corr_{s,vf}) + u^{2}(corr_{temp}) + u^{2}(corr_{temp}) + u^{2}(corr_{o,dt}) + u^{2}(corr_{odt}) + S_{lnt}^{2}} + \left(\frac{u^{2}(O_{2,meas,dry})}{(21 - O_{2,meas,dry})^{2}}\right) + u^{2}(corr_{temp}) + u^{2}(corr_{temp}) + u^{2}(corr_{o,dr}) + u^{2}(corr_{o,dr}) + u^{2}(corr_{o,dr}) + u^{2}(corr_{temp}) $

u(C,O_{2,ref)} uncertainty associated with the mass concentration at O₂ ref. concentration mg/m³ C,O_{2,ref} mg/m³ mass concentration at O₂ reference concentration O2 measured concentration % volume uncertainty associated to the measured O2 concentration % (relative to O_{2 meas}) Linx Printing Technologies Limited, St Ives, Permit No: B18/14, R/15-6363, v1

Visit 1 of 2015

Page 23 of 25

APPENDIX 4

Uncertainty Estimate For The Me nt Of Total Organic Carbon

	Uncertaint	/ Estimate	For The I	Measurem	ent Of T
Analyser Type/Model	Sick	Maihak	1		
Reference Oxygen %		0	(0 = No corre	ction)	
		Toot 1	1		
Limit value	mg/m ³	Test 1 75			
Limit value	ppm	46.7	_		
Measured concentration	ppm	277.8			
Measured concentration	mg/m ³	446.4			
Concentration at O ₂ ref. concentration	mg/m³	N/A			
-	ı		 		
Calibration gas	ppm	74.7	_		
Calibration gas	mg/m ³	120.1	_		
Analyser range	ppm	9.3	_		
Analyser range	mg/m ³	15.0			
Correction of Lack of Fit					
Lack of fit	% range	2.0	1		
	u(Corr, _{fit})	0.11	1		
Corrections of Zero and Span Drift			the residual is	assumed to b	e < 5% u(ma
Zero Drift	% range	0.00			
	u(Corr, _{0dr})	0.00	4		
Span Drift	% range	0.00	1		
	u(Corr, _{sdr})	0.00]		
Correction of Repeatability of Measurement					
Repeatability SD at span level	% range	0.0	1		
Not reported)	u(Corr, _{rep})	0.00			
Correction of adjustment					
losses in the line	% range	0.09	1		
	u(Corr, _{loss})	0.15			
Uncertainty of calibration gas	% range	2.0			
	u(Corr, _{cal})	2.78			
			- "		
Correction of Influence of Interferents	0/ 10000	1	1		
N₂O	% range	0.00	_		
20	u(Corr, _{N2O})	0.00	_		
CO ₂	% range	0.00			
211	u(Corr, _{CO2})	0.00	4		
CH₄	% range	0.00	4		
T	u(Corr, _{CH4})	0.00	4		
Total of interferent influences	% range	2.50	4		
$u(\Sigma Corrint) = \max[S_{Int,p}; S_{Int,n}]$	$u(\Sigma Corr_{int})$	0.16	J		
Correction of Influence Quantities					
Sensitivity to sample volume flow	% range	1.60	1		
• •	u(Corr, _{flow})	0.09	1		
Sensitivity to atmospheric pressure	% range		1		
(Not reported)	u(Corr, _{press})	0.00	1		
Sensitivity to ambient temperature	% range	-2.40	1		
	u(Corr, _{temp})	-0.28	1		
Sensitivity to electrical voltage	% range	0.50	1		
(Not reported)	u(Corr, _{volt})	0.10]		
	L (O)	0.70	1		
Maximum standard uncertainty	u(Corr, _{max})	2.78	4		
5% of maximum standard uncertainty	u(Corr, _{5%})	0.14	J		
nterferent Concentration Variations	Minimum	Maximum	Value at cal	Performance	Units
CH ₄ range	0	10	0	50	mg/m ³
N ₂ O range	0	0	0	20	mg/m ³

Interferent Concentration Variations	Minimum	Maximum	Value at cal	Performance	Units
CH ₄ range	0	10	0	50	mg/m ³
N ₂ O range	0	0	0	20	mg/m ³
CO ₂ range	8	12	0	15	mg/m ³
Oxygen effect variations	Minimum	Maximum	Value at cal	Performance	Units
Oxygen effect	0	20	0	2	mg/m ³

Influence Quantitiy Variations

	Minimum	Maximum	Value at cal	Performance	Units
Sensitivity to sample volume flow	55	65	60	5	l/h
Sensitivity to atmospheric pressure	99	100	99	1	kPa
Sensitivity to ambient temperature	278	313	288	10	K
Sensitivity to electrical voltage	187	250	230	5	V

Measurement uncertainty		Test 1
Combined uncertainty	ppm	2.80
Combined uncertainty	mg/m ³	4.50
Combined uncertainty at oxygen reference	ma/m ³	4.50

Expanded uncertainty expressed with a level of confidence of 95%, k=2

Overall uncertainty	ppm	5.6		
Overall uncertainty	mg/m ³	9.0		
Overall uncertainty relative to measured value	%	2.0		
Overall uncertainty relative to range	%	60.0		
Overall uncertainty relative to ELV	%	7.5		

The uncertainty evaluation has been carried out in accordance with UKAS requirements.

Uncertainty Estimate For The Measurement Of Total Organic Carbon

	Uncertainty		; FOI THE !	vicasureiii	ent Or 10
Analyser Type/Model Reference Oxygen %		Maihak 0	(0 = No corre	ection)	
	Í	Test 1	Test 2	1	
Limit value	mg/m ³	75	75	1	
Limit value	ppm	46.7	46.7]	
Measured concentration	ppm	313.7	335.3		
Measured concentration Concentration at O ₂ ref. concentration	mg/m ³	504.2 N/A	538.8 N/A		
Concentration at O ₂ ref. concentration	mg/m ³	IV/A	IN/A	1	
Calibration gas	ppm	74.7	74.7	1	
Calibration gas	mg/m ³	120.1	120.1		
Analyser range	ppm	9.3	9.3		
Analyser range	mg/m ³	15.0	15.0]	
Correction of Lack of Fit					
Lack of fit	% range	2.0	2.0	1	
	u(Corr, _{fit})	0.11	0.11]	
Corrections of Zero and Span Drift Zero Drift	(*All drift is c	alculated for 0.00	the residual is 0.00	assumed to be	e < 5% u(ma)
Zelo Dint	u(Corr, _{Odr})	0.00	0.00		
Span Drift	% range	0.00	0.00	1	
	u(Corr, _{sdr})	0.00	0.00]	
Correction of Repeatability of Measurement Repeatability SD at span level	0/ range	0.0	0.0	1	
(Not reported)	% range u(Corr, _{rep})	0.00	0.00	1	
7P	- (· · iep /	2.00		1	
Correction of adjustment				•	
losses in the line	% range	0.15	0.15	1	
Uncertainty of calibration gas	u(Corr, _{loss}) % range	0.27 2.0	0.29 2.0	+	
Officertainty of Calibration gas	u(Corr, _{cal})	3.14	3.35	•	
	- (/Gai/			1	
Correction of Influence of Interferents				=	
N ₂ O	% range				
CO ₂	u(Corr, _{N2O}) % range	0.00	0.00		
002	u(Corr, _{CO2})	0.00	0.00	•	
CH ₄	% range	0.00	0.00	1	
	u(Corr, _{CH4})	0.00	0.00		
Total of interferent influences $u(\Sigma Corrint) = \max_{l} [S_{lnt,p}; S_{lnt,n}]$	$\frac{\% \text{ range}}{u(\Sigma Corr_{int})}$	2.50	2.50	1	
$u(2COTITI() \equiv \max[S_{lnt,p}, S_{lnt,n}]$	u(20011 int)	0.16	0.16	J	
Correction of Influence Quantities					
Sensitivity to sample volume flow	% range	1.60	1.60]	
	u(Corr, _{flow})	0.09	0.09	1	
Sensitivity to atmospheric pressure	% range	0.00	0.00	4	
(Not reported) Sensitivity to ambient temperature	u(Corr, _{press}) % range	0.00 -2.40	0.00 -2.40	1	
constantly to ambient temperature	u(Corr, _{temp})	-0.28	-0.28	1	
Sensitivity to electrical voltage	% range	0.50	0.50	1	
(Not reported)	u(Corr, _{volt})	0.10	0.10]	
				_	
Maximum standard uncertainty	u(Corr, _{max})	3.14	3.35	1	
5% of maximum standard uncertainty	u(Corr, _{5%})	0.16	0.17	1	
***************************************	0/0/			•	
			T	In (11.5
Interferent Concentration Variations	Minimum 0	Maximum 10	Value at cal	Performance 50	Units ma/m ³
CH₄ range N₂O range	0	0	0	50 20	mg/m ³ mg/m ³
CO ₂ range	8	12	0	15	mg/m ³
Oxygen effect variations	Minimum	Maximum	Value at cal	Performance	Units
Oxygen effect	0	20	0	2	mg/m ³
Influence Quantitiy Variations					
minuence Quantity variations	Minimum	Maximum	Value at cal	Performance	Units
Sensitivity to sample volume flow	55	65	60	5	I/h
Sensitivity to atmospheric pressure	99	100	99	1	kPa
Sensitivity to ambient temperature	278	313	288	10	K
Sensitivity to electrical voltage	187	250	230	5	V
Measurement uncertainty	ĺ	Test 1	Test 2	1	
Combined uncertainty	ppm	3.16	3.38	1	
Combined uncertainty	mg/m ³	5.08	5.43]	
Combined uncertainty at oxygen reference	mg/m ³	5.08	5.43]	
		. 0			
Evpanded upportainty overseased with a level of	confidence of OEC/				
Expanded uncertainty expressed with a level of Overall uncertainty			6.8	1	
	ppm	6.3 10.2	6.8 10.9		
Overall uncertainty	ppm mg/m³ %	6.3	10.9 2.0]	
Overall uncertainty Overall uncertainty	ppm mg/m ³	6.3 10.2	10.9		

The uncertainty evaluation has been carried out in accordance with UKAS requirements.