EMISSIONS MONITORING SURVEY (Main Stack – Ink Filling)

Prepared for:

Linx Printing Technologies Burrell Road St Ives Cambridgeshire PE27 3LA

Guidance Note	: PG6/44
Job Number	: P883
Report Number	: R001
Report Issue Date	: 21 st December 2010
Survey Dates:	: 7 th December 2010

Prepared by:

Environmental Compliance Limited Unit G1 Main Avenue Treforest Industrial Estate Pontypridd CF37 5YL.

Tel: 01443 841760 Fax: 01443 841761

R	eport Issue:	FINAL				
Repo	ort Prepared by:	Report Reviewed & Approved by MCERTS Level Two Technical Endorsements TE1, TE2, TE3 & TE4				
	Paul Calland	Name:	Andy Barnes			
Name:		MCERTS No:	MM 03 235			
		Signature:	APe			
Date:	20/12/10	Date:	21/12/10			

This report is not to be used for contractual or engineering purposes unless this approval sheet is signed where indicated by the approver and the report is designated "FINAL".

This report has been prepared by Environmental Compliance Limited (ECL) in their professional capacity as Environmental Consultants. The contents of the report reflect the conditions that prevailed and the information available or supplied at the time of its preparation. The report, and the information contained therein, is provided by ECL solely for use and reliance by the Client in performance of ECLs duties and liabilities under its contract with the Client. Until ECL has received payment in full as detailed in the quotation or contract the contents of this report remain the legal property of ECL. The contents of the report do not, in any way, purport to include any manner of legal advice or opinion.

Should the Client wish to release this report to a Third Party for the party's reliance, Environmental Compliance Ltd may, at its discretion, agree to such release provided that:

- Environmental Compliance Ltd gives written agreement prior to such release and ECL has received payment in full for all works/services undertaken;
- By release of the report to the Third Party, that Third Party does not acquire any rights, contractual or otherwise, whatsoever against Environmental Compliance Ltd and, accordingly, Environmental Compliance Ltd assume no duties, liabilities or obligations to that Third Party;
- Environmental Compliance Ltd accepts no responsibility for any loss or damage incurred by the Client or for any conflict of Environmental Compliance Ltd interests arising out of the Clients' release of this report to the Third Party.

In the event that a report is revised and re-issued, the client shall ensure that any earlier versions of the report, and any copies thereof, are void and such copies should be marked with the words "superseded and revised".

Any Opinions and Interpretation expressed within this report are outside the scope of the UKAS accreditation.

TABLE OF CONTENTS

Section	Description	Page Number
	Document Control Sheet	
		A
PART 1	EXECUTIVE SUMMARY	4
1	MONITORING OBJECTIVES	4
1.1	Monitoring Results	5
1.2	Operating Information	6
2	MONITORING DEVIATIONS	7
PART 2	SUPPORTING INFORMATION	8
3	SAMPLING STAFF DETAILS	8
4	SAMPLING PROTOCOLS / METHODOLOGIES	9
5	SAMPLE POINT DESCRIPTION	11
	EQUIPMENT IDs	12
	FIGURES	14
	TABLES	16
	VELOCITY TRAVERSE PROFILE	19
	FIELD CALIBRATION & SAMPLING DATA	21
	LABORATORY ANALYSIS RESULTS	24
	UNCERTAINTY CALCULATIONS	28

PART 1 - EXECUTIVE SUMMARY

1 Monitoring Objectives

Environmental Compliance Ltd (ECL) was commissioned by **Linx Printing Technologies** to undertake an emission monitoring survey at their **Location in St Ives, Cambs**. This report presents the findings of the study.

The monitoring at this installation was carried out in accordance with our quotation reference **PC/P883/Q001**, for compliance check monitoring of emissions to air. The substances requested for monitoring at each emissions point are listed below:

	Emission Point Identification
Substances to be monitored	Ink Filling – Main Stack
Particulates	• U
Total Organic Carbon (TOC)	• U

• Denotes the substances to be monitored.

Denotes UKAS accreditation is held for monitoring that substance, but does not mean that it has been claimed which will depend on whether the testing could be completed in accordance with the Standard Reference Method.

Special Requirements: "Normal Operations."

1.1 Monitoring Results

Emission Point Reference	Substance to be Monitored	Emission Limit Value	Periodic Monitoring Result	Uncertainty %	Units	Reference Conditions 273 K, 101.3 kPa	Date of Sampling	Start and End Times	Monitoring Method Reference	Accreditation for use of Method	Tick if non- conforming test (see Sections 2 & 5)	Operating Status
	Particulates \$	20	0.31	48	mg/m ³	& Wet Gas	07/12/10	08:20 - 10:21	BS EN 13284-1	UKAS / MCERTS		
Ink Filling – Main Stack	Particulates \$	20	0.26	56	mg/m ³	& Wet Gas	07/12/10	11:00 – 13:01	BS EN 13284-1	UKAS / MCERTS		Normal
Main Otack	TOCs as Carbon	150	220.25	7	mg/m ³	& Wet Gas	07/12/10	08:06 - 15:47	BS EN13526	UKAS / MCERTS		

<u>Notes</u>

Emission Limit Value Periodic Monitoring Result Uncertainty Reference Conditions Monitoring Method Reference **Accreditation for use of Method** Operating Status

NA

The emission limit value is that stated in the permit and will be expressed as a concentration or a mass emission.

The result given is expressed in the same terms and units as the emission limit value.

The uncertainty associated with the quoted result is at the 95% confidence interval. The Uncertainty results **DO NOT** take into account the effect of the sample location limitations. All results are expressed at 273 K and 101.3kPa. The oxygen and moisture corrections are stated.

The method stated is in accordance with the Environment Agency Technical Guidance Note M2, or other method approved by the Environment Agency.

thod The details indicate the accreditation for the use of the complete monitoring method, e.g. MCERTs, UKAS. If use of the method is not accredited "NA" is stated. The details indicate the feedstock and the loading rate of the plant during monitoring.

Chemical Analysis on sample reagents was performed by an External Laboratory as detailed in Section 4

UKAS Accreditation Held but UKAS Accreditation cannot be claimed for the test as sampling did not comply with the Standard Reference Method (SRM), see section 2 & 5 Method is NOT UKAS Accredited.

1.2 Operating Information

Emission Point						Comparison of Operator CEMS and Periodic Monitoring Results						
Reference	Process Type	Process Duration	Fuel	Feedstock	Abatement	Load	Parameter	Date	Time	CEMS Results	Periodic Monitoring Results	Units
Main Stack	Batch	Various	n/a	n/a	None	Normal				n/a		

Notes:

Process Type	State whether the process is a continuous or batch process.
Process Duration	If a batch process, state the duration, frequency and details of the portion of the batch sampled. If continuous state "NA"
Fuel	If applicable, state the fuel type If not applicable state "NA"
Feedstock	State the feedstock type
Abatement	State the type and whether operational during monitoring. If not applicable state "NA"
Load	State the normal load, throughput or rating of the plant
CEMS Data	Enter this data for each CEM installed if it is has been provided by operator otherwise state "NP" (NOT PROVIDED)

2 Monitoring Deviations

The objective of the survey was to measure the concentrations of pollutants from the processes / locations as detailed in Section 1. This survey meets the requirements of the site's **Applicable Process Guidance Note: PG6/44** where UKAS and MCERTS accreditation has and could be claimed for the testing in the monitoring results table.

There were no substance deviations from the original and agreed emissions monitoring schedule.

The particulate tests were carried out using an allowed deviation from BSEN 13284 & MID, due to the fact that no impingers were used and no moisture test was carried out. Based on EA / UKAS agreement, as the stack gases are essentially dry and the results are reported at wet gas conditions, UKAS / MCERTS can still been claimed for these tests.

There were no non-conforming tests.

Homogeneity tests have not been completed for pollutants at the following locations:

• Main Stack - Not applicable to this location.

PART 2 – SUPPORTING INFORMATION

3

SAMPLING STAFF DETAILS

Site Sampling Team

Names of Site Team	Dates on Site	MCERTS No.	LEVEL	Technical Endorsements
Paul Calland	07/12/10	MM 03 212	2	TE1, TE2, TE3, TE4

Report Reviewer

Name	MCERTS No.	LEVEL	Technical Endorsements
Andy Barnes	MM 03 235	2	TE1, TE2, TE3, TE4

Technical Endorsement Key:-

TE1 – Isokinetic Particulates, Temperature & Velocity Profiles, Oxygen.

TE2 – Isokinetic Extractive Pollutants:- Metals, Dioxin & Furans, PAHs, PCBs, HCL, HF.

TE3 – **Non-Isokinetic** Extractive Pollutants:- Speciated VOCs, HF, HCL, Cyanide.

TE4 – Continuous Analysers (Combustion Gases):- VOCs, CO, NOx, SO2.

4 SAMPLING PROTOCOLS / METHODOLOGIES

TOCs as Carbon

Testing was carried out using a Signal 3030PM FID and heated gas transport system with reference to the manufacturer's operation handbook, **BS EN 13526** and in-house technical procedure **ECL/TPD/032**. The analyser was calibrated pre and post the sample period using span gas and zero scrubbed air. Data was corrected by molecular weight to VOCs as total carbon.

Data was recorded as minute averages over each test period. The minute averaged data is presented in the Figures Section and the minute averaged data is detailed in the Tables Section.

Particulates

Testing was carried out using a Universal Stack Sampling system in accordance with **BS EN 13284-1 & MID** and In-house technical procedure **ECL/TPD/027.**

Isokinetic particulate sampling is achieved when the velocity of gas entering the sampling nozzle is exactly equal to the velocity of the approaching gas stream within the stack.

A measured volume of sample gas is withdrawn from the stack isokinetically through a sampling nozzle and through a pre-weighed filter positioned in an unheated housing inserted into the stack.

Particulate matter is collected on the filter. Following testing the front half of the filter housing, and the sample nozzle are rinsed to remove any particulate matter which, may have impacted on the surfaces during testing.

The filters and rinses are subsequently analysed to determine the amount of particulate matter captured.

RPS Laboratories (RPS) who are situated in Manchester carried out the analysis of the samples. **RPS** are UKAS accredited for all analysis conducted. In addition to the survey samples, a field blank is submitted as part of the technical procedure.

Pressure, Temperature and Velocity

Testing was carried out using a sampling system in accordance with **BS EN 13284-1 & MID** and In-house technical procedure **ECL/TPD/022**.

Temperature was recorded using a thermocouple and digital temperature reader.

Velocity and pressure was recorded using an "L" type pitot and digital manometer, data being recorded in mm H_2O .

5 SAMPLE POINT DESCRIPTION

The sample location that was monitored is detailed below:-

Main Stack

The sampling plane is in long straight vertical section of the emissions stack.

The diameter at the sample plane is 0.5m.

The flow characteristics meet the *requirements* of the standard.

2 x 2" ports are available and are located as per the requirements of BS EN 13284.

EQUIPMENT IDs (Pre site checklist from SSP)

PRE SITE EQUIPMENT CHECKLIST/ EQUIPMENT USED

(Completed before departure to site and when on site in full)

(Completed before depa	rture to	site and	d when o	on site in					
Equipment	Equip. Type	ID No:	ID No:	ID No:	ID No:	ID No:	ID No:	ID No:	ID No:
MST console/pump MST Nozzle set MST "S" Type Pitot MST Probe MST Hot Box MST Impinger Arm Barometer Site Balance Site Check weights	E001	U006 204							
Horiba Heated Probe Chiller Sonimix Heated Line	E002								
FID Heated Line	E003	304 212							
Testo	E004								
FTIR Heated Probe Heated Line	E005								
Stackmite "L" Type Pitot Digital Manometer Stack Thermocouple Thermocouple Reader Nozzle Set	E006	489 421 468 358 522							
Workhorse Pumps Low Flow Pumps	E007								

Quantity of Ice Required / Used for Survey ZERO Bags (2kg bags)

FIGURES

Figure 1

TABLES

Table 1 - VOCData Recorded from Main StackSample Period: 08:06 – 15:47 on the 7th December 2010

Volumetric Flowrate (Reference Conditions) = 0.824 m³/sec *

	Minimum	Maximum	Average	Emission Rate
	mg/m ³	mg/m ³	mg/m ³	Kg/hr
VOCs (as carbon)	76.74	761.99	220.25	0.653

Data expressed at (273K, 101.3 kPa & Wet Gas)

Table 2 – Particulate Matter

Data Recorded from Main Stack - Ink Filling	
---	--

Emission Parameter	Units	TPM 1	TPM 2	Blank
Stack Diameter	metres	0.5	50	
Area of Sample Plane	m ²	0.1	96	
Stack Temperature	°C	10	10	
Gas Velocity (as Measured)	m/sec	4.36	4.36	
Gas Velocity (Reference Conditions)	m/sec*	4.20	4.20	
Volumetric Flowrate (as Measured)	m ³ /sec	0.86	0.86	
Volumetric Flowrate (Reference Conditions)	m ³ /sec*	0.824	0.824	
Sample Date		07/12/2010	07/12/2010	
Sample Period		08:20 - 10:21	11:00 - 13:01	
Sample Volume (reference Conditions)	m ³ *	2.040	2.050	2.045
Isokinetic Sampling Rate	%	105.15	105.67	
Sample Reference (ECL ID)	ECL/10/	6070 & 6071	6072 & 6073	6074 & 6075
Mass of Particulate Matter Collected	mg	0.63	0.54	0.54
Concentration of Particulate Matter	mg/m ³ *	0.31	0.26	0.26
Emission Rate of Particulate Matter	g/hr	0.92	0.78	
Expanded Uncertainty (% Relative)	%	48	56	
Emission Limit Value (ELV)	mg/m ³ *	20	20	
Blank Concentration as Percentage of ELV	%			1.32

*Reference Conditions (273K, 101.3kPa, Wet Gas)

VELOCITY TRAVERSE PROFILE

Environmental Compliance Limited

Envir	ronmental Compliance Limited	Traverse Data Prof	Traverse Data Profoma Date of Measurement		07/12/2010		
Company	Linx Printing	Stack Diameter (mm)	500	Pitot tube coefficient	1.00		
Site	Stives	Port Length (mm)		Pitot Id	489		Diagram/ Description of Cross Section of Stack/Duct
ocation	Ink Filling	Duct Length (mm) A		Stack Thermocouple ID	468		
Stack	Main Stack	Duct width (mm) B		Stack Temp Reader ID	358		mpanet in the second
ob No	P883	Barometric Pressure. (mb)	1012	Manometer ID	421		
Operators	PC	Static Pressure. (mm H ₂ 0)	2	Barometer ID	204		
				•			

	Distance to	Port	Temp.	(<u></u> AP)	Swirl Test	Port	Temp.	(<u>Δ</u> P)	Swirl Test
	Point (mm)	Port	(°C)	(mm H ₂ 0)	^O from ref. 0	Port	(°C)	(mm H ₂ 0)	^O from ref. 0
	33	Α	6.0	0.8	<15	В	6.0	0.8	<15
	75	Α	6.0	1.2	<15	В	6.0	1.2	<15
	125	Α	6.0	1.4	<15	В	6.0	1.4	<15
	175	Α	6.0	1.6	<15	В	6.0	1.6	<15
	225	Α	6.0	2.0	<15	В	6.0	2.0	<15
	275	Α	6.0	2.0	<15	В	6.0	2.0	<15
	325	Α	6.0	1.6	<15	В	6.0	1.6	<15
	375	Α	6.0	1.4	<15	В	6.0	1.4	<15
	425	Α	6.0	1.2	<15	В	6.0	1.2	<15
	468	Α	6.0	0.8	<15	В	6.0	0.8	<15
Total			60				60		
Max			6	2			6	2	
Min			6	0.8			6	0.8	
Average			6.00	1.40			6.00	1.40	

Compliance With Positional Requiremen	ts?	
Height of sample ports from Platform		1.0m
Height of sample ports from Platform Number of sample ports		2
Height of sample ports from Platform		
Height of sample ports from Platform Number of sample ports		2
Height of sample ports from Platform Number of sample ports Width of platform (port back to handr	ail)	2 >1 m

Suitability of Sampling Position	Actual Stack Conditons
Permitted highest:lowest flow pressure ratio =9:1	2.5:1
Permitted deviation of flow from axis=15°	<15
X-sectional area for stacks= πr^2	0.20 m ²
X-sectional area for ducts = L x B	m²
Suitability of Position for Sampling	OK

Average temp (K)=((average temp port A+average temp port B)/2)+273

279.00

FIELD SAMPLING & CALIBRATION DATA

Envi	ronmental Cor	npliance Lim	ited	PARTIC	ULATE DATA	SAMPLING PR	OFORMA	Date of	Measurement	07/12/2010]	
	ECL/TPD/		27		Time taken to	change Ports	? 1		Start Time	08:20		End Time	10:21	Additional N	oisture Weighings
				1			1			Test Duration	120				
Clie			Printing	Stack Profile		Circular	Console id	U006	Barometer id	204		Impinger 1	n/a	Item Name	
Si			lves	Stack Area (0.20	Pump id	U006	Nozzle Id	522		SOL/	dry stack	Start Weight (g)	
Loca			Filling	_	Pressure (mb)	1012	Probe id	n/a	Nozzle size	9.04		Start Weight (g)	0	End Weight (g)	
Stac			Stack	Static Pres.		2	DGM Yd	1.003	Filter Id	65940		End Weight (g)	0.1	Total weight (g)	0
	t No.		PM 1	Pitot coeffic		1	∆H@	42.62	Pitot ID	489		Total weight (g)	0.1		
	No		883		er Setting (^o C)	n/a	Impinger Id	n/a	Hot Box ID	n/a				Item Name	
ECL Sit	te Staff		<u> </u>	Hot Box Se	tting ([°] C)	n/a	Balance Id	n/a				Impinger 2	wet gas	Start Weight (g)	
												SOL/	reporting	End Weight (g)	
		0							0			Start Weight (g)		Total weight (g)	0
	Sample	Leak 1	Leak 2	Leak 3	Leak 4	Leak 5	Total		Original K Fa	ctor Settings		End Weight (g)			
Start Volume	1523315.0								Meter Temp.	10		Total weight (g)	0	Item Name	
Final Volume	1525345.0								Stack Temp	10				Start Weight (g)	
Total Volume	2030.0	0.0	0.0	0.0	0.0	0.0	2030.0		%Moisture	0.00		Impinger3	Empty	End Weight (g)	
												SOL/		Total weight (g)	0
Leak Check	First	Second	Third	Fourth	Fifth	Measured O ₂ (Atmospheric)	20.90	K factor	25		Start Weight (g)			
Rate I/min	<0.2	<0.2				Measured Carb	n Dioxide %		Reference Oxygen			End Weight (g)		Item Name	
									Percentage			0 (8)			
Vaccum "Hg	15	15				Measured Carbon Mo	inoxide ppm		. croomage		l	Total weight (g)	0	Start Weight (g)	
Time of Check	08:19	10:22												End Weight (g)	
												Impinger 4	Silica	Total weight (g)	0
	se Point	A2	A2	A2	A2	A2	A2	A9	A9	Total		SOL/			
Time/Poir		0 - 5	5 - 10	10 - 15	15 - 20	20 - 25	25 - 30	30 - 35	35 - 40			Start Weight (g)		Item Name	
	nm H20)	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20		End Weight (g)		Start Weight (g)	
	ictor	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00			Total weight (g)	0	End Weight (g)	
<u>Δ</u> Η (Ο		30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00				Total weight (g)	0
Meter		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		Impinger 5			
Meter (0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		SOL/		Item Name	
Stack Te		10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00		Start Weight (g)		Start Weight (g)	
Impinger		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a			End Weight (g)		End Weight (g)	
Vaccum	n ("Hg)	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00		Total weight (g)	0	Total weight (g)	0
	se Point	A9	A9	A9	A9	B2	B2	B2	B2	Total		Impinger 6		Item Name	
Time/Poi	int(mins)	40 - 45	45 - 50	50 - 55	55 - 60	60 - 65	65 - 70	70 - 75	75 - 80			SOL/		Start Weight (g)	
	nm H20)	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20		Start Weight (g)		End Weight (g)	
	ictor	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00			End Weight (g)		Total weight (g)	0
ΔН (О		30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00		Total weight (g)	0		
	(Tm in)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				Item Name	
Meter (*		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		Impinger 7		Start Weight (g)	
Stack Te		10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00		SOL/		End Weight (g)	
	r T Outlet	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a			Start Weight (g)		Total weight (g)	0
Vaccun	n (" Hg)	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00		End Weight (g)			
												Total weight (g)	0	Item Name	
Travers	se Point	B2	B2	B9	B9	B9	B9	B9	B9	Total				Start Weight (g)	
Time/Poi	int(mins)	80 - 85	85 - 90	90 - 95	95 - 100	100 - 105	105 - 110	110 - 115	115 - 120			Impinger 8		End Weight (g)	
ΔΠ (m	nm H20)	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20		SOL/		Total weight (g)	0
K fa		25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00			Start Weight (g)			
<u>ΔΗ</u> (Ο		30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00		End Weight (g)		Item Name	
Meter		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		Total weight (g)	0	Start Weight (g)	
Meter (0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		i otal weight (g)	v		
	,											E	0.10	End Weight (g)	
Stack Te	1 ()	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00		Total (g)	0.10	Total weight (g)	0
	TOutlet	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a						
Vaccun	n ("Hg)	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00					

				PARTIC	ULATE DATA S	SAMPLING PR	OFORMA	Date of	Measurement	07/12/2010				
	ECL/TP		27	1	Time taken to	change Ports?	1	I	Start Time	11:00	End Time	13:01	Additional M	pisture Weighings
				-	This taken to	onunge i ono.	•		Otart Time	Test Duration		10.01	, additional inte	sistare trongillinge
Clie	nt	Linx	Printing	Stack Profile	9	Circular	Console id	U006	Barometer id	204	Impinger 1	n/a	Item Name	
Site			lves	Stack Area (0.20	Pump id	U006	Nozzle Id	522	SOL/	dry stack	Start Weight (g)	
Locat	tion		Filling		Pressure (mb)	1012	Probe id	n/a	Nozzle size	9.04	Start Weight (g)	0	End Weight (g)	
Stack	k ID		1 Stack	Static Pres.	. ,	2	DGM Yd	1.003	Filter Id	65967	End Weight (g)	0.1	Total weight (g)	0
Test	No.	TI	PM 2	Pitot coeffic		1	ΔH@	42.62	Pitot ID	489	Total weight (g)	0.1		•
Job	No	P	9883		er Setting (^o C)	n/a	Impinger Id	n/a	Hot Box ID	n/a			Item Name	
ECL Site	e Staff		PC	Hot Box Se		n/a	Balance Id	n/a			Impinger 2	wet gas	Start Weight (g)	
											SOL/	reporting	End Weight (g)	
											Start Weight (g)		Total weight (g)	0
ĺ	Sample	Leak 1	Leak 2	Leak 3	Leak 4	Leak 5	Total		Original K Fa	ctor Settings	End Weight (g)		-	
Start Volume	1525400.0								Meter Temp.	10	Total weight (g)	0	Item Name	
Final Volume	1527440.0								Stack Temp	10			Start Weight (g)	
Total Volume	2040.0	0.0	0.0	0.0	0.0	0.0	2040.0		%Moisture	0.00	Impinger3	Empty	End Weight (g)	
											SOL/		Total weight (g)	0
Leak Check	First	Second	Third	Fourth	Fifth	Measured O ₂ (Atmospheric)	20.90	K factor	25	Start Weight (g)			
Rate I/min	<0.2	<0.2				Measured Carbo	on Dioxide %		Reference Oxygen		End Weight (g)		Item Name	
Vaccum "Ho	15	10				Measured Carbon Mo			Percentage	0	Total weight (g)	0	Start Weight (g)	
Time of Check	10:59	13:02				measured carbon me	noxide ppin		-		Total weight (g)	Ū	End Weight (g)	
Time of Check	10:59	13:02				J					lunging and	0:11:		0
Traverse	. Daint	A2	A2	A2	A2	A2	A2	A9	A9	Total	Impinger 4 SOL/	Silica	Total weight (g)	U
Time/Point		A2 0 - 5	A2 5 - 10	A2 10 - 15	A2 15 - 20	A2 20 - 25	A2 25 - 30	A9 30 - 35	A9 35 - 40	Iotai			Item Name	
	<u> </u>									4.00	Start Weight (g)			
ΔΠ (mm K fac		1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	End Weight (g)	0	Start Weight (g)	
		25.00 30.00	25.00 30.00	25.00 30.00	25.00 30.00	25.00 30.00	25.00 30.00	25.00 30.00	25.00 30.00	30.00	Total weight (g)	0	End Weight (g)	0
Meter (0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Impinger 5		Total weight (g)	0
Meter (T		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	SOL/		Item Name	
Stack Te		10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	Start Weight (g)		Start Weight (g)	
Impinger		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	10.00	End Weight (g)		End Weight (g)	
Vaccum		2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	Total weight (g)	0	Total weight (g)	0
vaccum	(lig)	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	Total weight (g)	U	Total weight (g)	0
Traverse	e Point	A9	A9	A9	A9	B2	B2	B2	B2	Total	Impinger 6		Item Name	
Time/Poir		40 - 45	45 - 50	50 - 55	55 - 60	60 - 65	65 - 70	70 - 75	75 - 80	Total	SOL/		Start Weight (g)	
ΔΠ (mn	· · /	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	Start Weight (g)		End Weight (g)	
K fac		25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	1.20	End Weight (g)		Total weight (g)	0
ΔH (Or		30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	Total weight (g)	0	rota: noight (g/	•
Meter (0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	<u> </u>		Item Name	
Meter (T		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Impinger 7		Start Weight (g)	
Stack Ter		10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	SOL/		End Weight (g)	
Impinger		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		Start Weight (g)		Total weight (g)	0
Vaccum		2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	End Weight (g)			-
											Total weight (g)	0	Item Name	
Traverse	e Point	B2	B2	B9	B9	B9	B9	B9	B9	Total	(g)	·	Start Weight (g)	
Time/Poir		80 - 85	85 - 90	90 - 95	95 - 100	100 - 105	105 - 110	110 - 115	115 - 120		Impinger 8		End Weight (g)	
ΔΠ (mn	. ,	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	SOL/		Total weight (g)	0
K fac	,	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	1.20	Start Weight (g)		. Star weight (g/	•
ΔH (Or		30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	End Weight (g)		Item Name	
Meter (0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Total weight (g)	0	Start Weight (g)	
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	i otal weight (g)	U		
Meter (T													End Weight (g)	
Stack Te		10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	Total (g)	0.10	Total weight (g)	0
Impinger		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a					
Vaccum	n ("Hg)	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00				

			тос		
			ppm		
Formula ref	Analys	ser Range	400		
	Repeata	bility at Zero	4		
Α	Span Gas Con	centration Applied	50.04		
В	Zero Gas Cond	centration Applied	0		
		Zero	6.25	07:10 - 07:15	
	Direct Cal	Span	56.38	07:15 - 07:20	
		Zero	6.25	07:22 - 07:27	
	Differe	nce (Zero)	0		
	<2×Repeata	ability @ Zero?	YES		
	· · · · ·				
С	Pre Test	Zero	6.25	07:28 - 07:33	
D	Pre Test	Span	56.25	07:33 - 07:38	
	Difference (Zero)		0		
Drift	<2×Repeata	<2×Repeatability @ Zero?			If Red CONTACT QM
Correction	Differe	nce (Span)	0.125		
	<2%	Relative	YES		If Red CONTACT QM
F	Post Test	Zero	7.50	15:50 - 15:55	
G	Post Test	Span	55.00	15:55 - 16:00	
	Differe	nce (Zero)	1.250		
	<2% of	Span Value	NO		If Red apply Drift
	Differe	nce (Span)	1.250		
		Span Value	NO		If Red apply Drift
	Drif	it <5%?	YES		If Red CONTACT QM
	Note* TOC is	logged in mA NOT	nnm - Zero Of	fset is likely	•

FID CALIBRATION DATA

Note* TOC is logged in mA NOT ppm - Zero Offset is likely

LABORATORY ANALYSIS RESULTS

		Test C	ertificate			Date 17/12/201
lient	Environmental	Compliance Ltd	Ord	er No.	P7949	
	Unit G1		Cer	tificate No.	WK10-685	15
	Main Avenue					
	Treforest Indus	trial Estate	Issu	e No.	1	
	Pontypridd					
	CF37 5YL					
Contact	Andy Barnes	3	Dat	e Received	13/12/201	D
Description	3 filters & 3 sol	utions for TPM	Tec	hnique	Gravime	tric
Pa	arameter	Analysis Method	Accreditation	Method	LOD	Uncertainty
Total p	articulate matter	D9	UKAS	0.1 n	na	-
Total p	articulate matter	D9	UKAS	0.5 n	-	2
ample No.	630254	ECL/10/6070	l			Method
otal particulate n	natter	0.13 mg				D9(U)
ample No.	630255	ECL/10/6071				Method
otal particulate n	natter	<0.5 mg				D9(U)
		5.5 mg				(-)
	630256	ECL/10/6072				Method
Sample No.		2				
ample No. otal particulate n		ECL/10/6072				Method
ample No. otal particulate n ample No.	630257	ECL/10/6072				Method D9(U)
Gample No. Total particulate n Gample No. Total particulate n Gample No.	630257 natter 630258	ECL/10/6072 <0.04 mg ECL/10/6073				Method D9(U) Method
iample No. iotal particulate n iample No. iotal particulate n iample No.	630257 natter 630258	ECL/10/6072 <0.04 mg ECL/10/6073 <0.5 mg				Method D9(U) Method D9(U)
iample No. iotal particulate n Sample No. iotal particulate n	630257 natter 630258	ECL/10/6072 <0.04 mg ECL/10/6073 <0.5 mg ECL/10/6074				Method D9(U) Method D9(U) Method

Page 1 of 2

RPS Laboratories Ltd. Unit 12. Waters Edge Business Park. Modwen Road. Salford. M5 3EZ Tel: (0161) 872 2443 Fax: (0161) 877 3959

		Test Certifica	ate		Date 17/
Client	Environmental Compliance Ltd	1	Certificate No. Issue No.	WK10-6895 1	
Tested By	Carl Hayes	Date	17/12/2010		
Approved By	y. Q., A Joanne Dewhurst Laboratory Manager	Date	17/12/2010		
	ty of RPS Laboratories Ltd. s and conditions appl∮ - a cop∮ is available on reque:	a.			
Method S∮mbols	(U) Analysis is UKAS Accredited (N) Analysis is not UKAS Accredited				
Concentration values (r UKAS accreditation	ng/m3 and ppm) are provided to assist with interprets	ation onl∮, the∮ are not cove	red b∮ the scope of		
Anal∳sis carried out on	samples 'as received'				

This document may not be reproduced other than in full, except with the written approval of the issuing laboratory.

Page 2 of 2

RPS Laboratories Ltd. Unit 12. Waters Edge Business Park. Modwen Road. Salford. M5 3EZ Tel: (0161) 872 2443 Fax: (0161) 877 3959

UNCERTAINTY CALCULATIONS

Site: St Ives Location: Main Stack

 $u_{mass} = \sqrt{\sum (u_{filter})^2 + (u_{solution})^2}$

			Recovered	RPS Method	Uncert (%) K=2	Standard	Uncertainty	Combined
Determinand	Filter	Solution	Mass	Filter	Solution	Filter	Solution	Uncertainty
	mg	mg	mg	mg	mg	mg	mg	mg
			TP	M 1				
Particulates	0.13	0.50	0.63	0.14	0.27	0.0700	0.14	0.15
			TP	M 2				
Particulates	0.0400	0.50	0.54	0.14	0.27	0.0700	0.14	0.15

	TPM 1	TPM 2		Standard	Uncertain	ty @ 95%	
Sampled Volume (V _m)	2.03	2.04	m ³	uVm	0.001	m ³	
Meter Correction Factor (Yd)	1.00	1.00					
Meter Temperature (T _m)	273.00	273.00	k	uTm	1.5	k	
Average Differential Pressure (AH)	30.00	30.00	mmH₂O	u∆H	0.25	mmH₂O	
Barometric Pressure (ρ _b)	759.06	759.06	mmHg	uρ _b	3.8	mmHg	
$\Delta H + \rho s (\rho_m)$	101.49	101.49	kPa				
Oxygen content (O _{2,m})	20.90	20.90	% by volume	$uO_{2m} = \sigma / \sqrt{n}$	0.00	0.00	% by volume
Moisture Content (H ₂ O)	0.00610	0.00607	% by volume	uH ₂ O	0.0747	0.0744	% by volume

Note: In the following calculations, the sensitivity coefficient (C) is estimated using: $C_i = \frac{\partial f}{\partial x_i}$

For each factor, uncertainty is then calculated by $C_{i}u_{i}$ where c is the sensitivity coefficient, u is the standard uncertainty and i is the index identifying the contributing factor e.g. $i=uV_{m}$, uT_{m} etc.

Where results are required at wet conditions, the following correction factor is used to convert the data from the dry gas meter:

TPM 1:	TPM 2:
$f_{s,wet} = \frac{100}{(100 - H_2 O)} = 1.00$	$f_{s,wet} = \frac{100}{(100 - H_2 O)} = 1.00$

Uncertainty in correction factor to STP due to measured $_{\Delta}H$ uncertainty component (u $_{\Delta}H$), measured stack pressure uncertainty component (u $_{p_s}$) & measured temperature of dry gas uncertainty component (u $_{m_{Dry}}$)

TPM 1:					TPM 2:				
$f_s = \frac{273}{760} \times \frac{P_b + \frac{\Delta H}{13.6}}{T_m} \times Y_d = 1.005$						$f_s = \frac{273}{760} \times \frac{P_b}{P_b}$	$\frac{+\frac{\Delta H}{13.6}}{T_m} \times Y_d =$	1.005	
u∆H	Maximum 1.00	Minimum 1.00	Sensitivity 0.0000970	ufstp 0.0000243	u∆H	Maximum 1.00	Minimum 1.00	Sensitivity 0.0000970	ufstp 0.0000243
υρ _b	1.00	1.00	0.00132	0.00495	υρ _b	1.00	1.00	0.00132	0.00495
uTm	1.01	1.00	0.00368	0.00552	uTm	1.01	1.00	0.00368	0.00552
H₂O	1.01	1.00	0.0100	0.000751	H₂O	1.01	1.00	0.0100	0.000747
$\frac{uf_s}{f_s} = \sqrt{\left(\frac{\sqrt{(u\Delta)}}{(I_s)}\right)^2}$	$\frac{H)^2 + (uP_s)^2}{P_m/101.3}\right)^2 + \left(\frac{1}{(2)}\right)^2 + \left(\frac{1}{(2)$	$\frac{uT_m}{T_m/273.15)}\right)^2 + \left(\frac{1}{10}\right)^2$	$\frac{uH_2O}{00/(100-H_2O)}\bigg)^2 =$	0.00748	$\frac{uf_s}{f_s} = \sqrt{\frac{\sqrt{(u\Delta I)}}{(P_s)}}$	$\frac{\overline{H}^{2} + (uP_{s})^{2}}{m/101.3} \right)^{2} + \left(\frac{1}{(T_{s})^{2}}\right)^{2}$	$\frac{uT_m}{n/273.15}\right)^2 + \left(\frac{1}{10}\right)^2$	$\frac{uH_2O}{00/(100-H_2O)}\bigg)^2$	= 0.00748

Uncertainty in volume @ STP due to volume correction factor uncertainty component (uV_{std}) & volume uncertainty component (uV_m)

TPM 1:				$V_{std} = V_{measured} \times f_s = 2.050$						
$V_{std} = V_{std}$	$f_{measured} \times f_s =$	2.040								
	Maximum m ³	Minimum m ³	Sensitivity	Standard Uncertainty (m³)		Maximum m ³	Minimum m ³	Sensitivity	Standard Uncertainty (m³)	
Effect of uV _{std}	2.05	2.02	2.03	0.0152	Effect of uV _{std}	2.06	2.03	2.04	0.0153	
Effect of uV_m	2.04	2.04	1.00	0.00100	Effect of uV _m	2.05	2.05	1.00	0.00100	
Combined Star	ndard Uncerta	inty			Combined Stan	ıdard Uncertaiı	nty			
$\frac{uV_{std}}{V_{std}} = 1$	$\left(\frac{uV_{std}}{f_s}\right)^2 +$	$-\left(\frac{uV_m}{V_m}\right)^2 =$	0.0309		$\frac{uV_{std}}{V_{std}} =$	$\sqrt{\left(\frac{uV_{std}}{f_s}\right)^2}$	$+\left(\frac{uV_m}{V_m}\right)^2 =$	0.0312		

Uncertainty of correction factor to reference oxygen due to measured oxygen uncertainty component (uf_{o2})

TPM 1:					TPM 2:				
$f_{o_2} = \frac{20.9\% - O_{2, ref}}{20.9\% - O_{2, measured}} = 1.00$					$f_{o_2} = \frac{20.9\%}{20.9\% - 6}$		1.00		
	Maximum	Minimum	Sensitivity	Standard Uncertainty		Maximum	Minimum	Sensitivity	Standard Uncertainty
uf_{o_2}					uf_{o_2}				

Uncertainty in final measurement @ reference conditions due to mass uncertainty component (uM)

	TPM 1:				TPM 2:				
Determinand	Maximum mg/Nm ³	Minimum mg/Nm ³	Sensitivity	uM mg/Nm ³	Maximum mg/Nm ³	Minimum mg/Nm ³	Sensitivity	uM mg/Nm ³	
Particulates	0.38	0.23	0.49	0.0746	0.34	0.19	0.49	0.0742	

опсетанну из вная веазотелени с тенетелсе сововного que to uncertainty component arrising nom teak ano/or loss (assumed 2% max) из не заприе

system (iil.)	TPM 1:	TPM 2:
Determinand	uL	uL
	mg/Nm ³	mg/Nm ³
Particulates	0.00357	0.00304

Uncertainty in final measurement @ reference conditions due to oxygen correction uncertainty component (ufoxy)

		TPM 1:				TPM 2:				
Determinand	Maximum	Minimum	Sensitivity	uf _{Oxy}	Maximum	Minimum	Sensitivity	uf _{Oxy}		
	mg/Nm ³	mg/Nm ³		mg/Nm ³	mg/Nm ³	mg/Nm ³		mg/Nm ³		
Particulates										

No uncertainty component due to oxygen correction.

Uncertainty in final measurement @ Reference Conditions due to uVstp

		TPM 1:				TPM 2:				
Determinand	Maximum	Minimum	Sensitivity	uVstp	Maximum	Minimum	Sensitivity	uVstp		
	mg/Nm ³	mg/Nm ³		mg/Nm ³	mg/Nm ³	mg/Nm ³		mg/Nm ³		
Particulates	0.31	0.30	0.15	0.00467	0.27	0.26	0.13	0.00401		

Combined Uncertainty

 $u_{combined} = \sqrt{\sum (u_M)^2 + (u_L)^2 + (uf_{Oxy})^2 + (uV_{stp})^2}$

	TPM 1:				TPM 2:				
Determinand	Combined Uncertainty	Expanded Uncertainty	Measured Concentration	Percent of Measured	Combined Uncertainty		Measured Concentration	Percent of Measured	
	mg/Nm ³	mg/Nm ³	mg/Nm ³	Concentration	mg/Nm ³	mg/Nm ³	mg/Nm ³	Concentration	
Particulates	0.0748	0.15	0.31	48.43	0.0744	0.15	0.26	56.45	
•••									