SOLVENT INVENTORY

Period: 1 November 2014 - 30 April 2015

Company:	Linx Printing Technologies Ltd
	Linx House
	8 Stocks Bridge Way Compass Business Park
	St Ives
	Cambs PE27 5JL

Contact:

Andy Mee

Product	Part No.	Quantity (Kg)	Solvent Content (%)	Quantity (Litres)	Density (Kg/L)	Weight of Solvent used (Kg)
Ethyl Lactate	BP800002	2365	100		1.034	2365
Ind. Meth. Spirits	BP800012	2303	100		0.8	2000
Acetone	BP800012 BP800013	86900	100		0.8	86900
TSDA3	BP800035	26860	100		0.791	26860
	BP800035 BP800045					
Diethylketone Antiterra 204	BP800045 BP800053	450	100 50		0.8 0.85	450
		5.4				0
	BP800056	54	100		0.968	54
White dispersion PGMMEA	BP800097	0	15	0	2	0
White dispersion TSDA	BP800098	332	15	166	2	49.8
Ethyl Acetate	BP800100	0	100	0		0
Methyl Acetate	BP800106	1980	100		0.934	1980
MEK Black Ink	BP990001 (1010)	0	92	0	0.85	0
MEK Solvent	BP990025	450240	100		0.804	450240
MEK Ink Red	BP990026 (1018)	0	93		0.9	0
Black to Red Jet Ink	BP990037 (1270)	3	93		0.85	2.79
Solvent	BP990042 (1540)	0	100		0.8	0
MEK Ink Black/Blue	BP990049 (1290)	54.9	93	61	0.9	51.1
MEK Ink Black/Red	BP990050 (1280)	5.95	93	7	0.85	5.5
Ink Red Mastercote	BP990058 (6100)	4.3	76	5	0.86	3.268
Solvent Mastercote	BP990059 (6600)	16.8	95	21	0.8	15.96
Ink Clear UV Readable	BP990060 (1121)	0	80		0.9	0
Black Water Removable	BP990067 (1035)	0	75		0.9	0
Solvent Water Removable	BP990068 (1535)	0	100		0.8	0
Blue Ink Mastercote	BP990069 (6120)	50	75		0.86	37.5
Blue Ink Mastercote	BP990072 (6220)	2	57.6		0.9	1.152
Blue Solvent Mastercote	BP990073 (6650)	3.228	90.3	4	0.807	2.9
Washdown Mastercote	BP990075	0	10		0.95	0
MEK Ink Black Alk Rem	BP990077 (1070)	0	75		0.9	0
MEK Solvent Alk Rem	BP990079 (1560)	0	99		0.8	0
MEK Solvent Alk Rem	BP990080 (1590)	0	99		0.8	0
White Pigmented Ink	BP990083 (1059)	0	80		0.9	0
Videojet Elk Grove	BP990085 (1075)	436.05	70	513	0.85	305.2
Black UV Cure Ink	BP990088	0	50	0	0.95	0
MEK Black Pigmented	BP990090	0	88		0.9	0
TSDA-3/Methanol Blend	BP990096	1141	100		0.792	1141
Opaque Blue Pigmented	BP990097	0	77		0.967	0
Vinyl White Ink	BP990110	0	80		0.9	0
Vinyl Yellow Ink	BP990111	4860	80	5400	0.9	3888
Vinyl Black Ink	BP990113	000	88	0400	0.9	0000
Vinyl Blue Ink	BP990114	0	80	0	0.9	0
Opaque Blue Pigmented	BP990115	0	77	0	0.967	0
Vinyl White Ink	BP990123	0	80	0	0.907	0
Opaque Blue Pigmented	BP990123 BP990125	0	80 77	0	0.9	0
Opaque Blue Pigmented	BP990125 BP990126	_	77		0.967	0
		0		0		Ű
White Pigmented Ink	BP990127	0	80	0	0.9	0
White Vinyl Pigmented	BP990128	0	80	0	0.9	0
Nazdar Navy Diaper Ink	BP990129	172	75	200	0.86	129
Nazdar Diaper Solvent	BP990130	83	95	100	0.83	78.9

Less Solvent returned for recycling (Kg)

Nil

Total Solvent used (Kg)

574561

EMISSIONS MONITORING SURVEY

Prepared for:

Linx Printing Technologies Ltd. Burrell Road St Ives Huntingdon Cambridgeshire PE27 3LA

Permit Number	: B04/94
Variation Number	: PPC10/08
Installation	: Manufacturing Main Vent
Visit Details	: Annual Compliance – 2014
Job Number	: P2208
Report Number	: R001
Report Issue Date	: 24 th November 2014
Survey Dates	: 4 th November 2014

Prepared by:

Environmental Compliance Limited Unit G1 Main Avenue Treforest Industrial Estate Pontypridd CF37 5BF.

> Tel: 01443 841760 Fax: 01443 841761

R	eport Issue:	FINAL			
Repo	ort Prepared by:	Report Reviewed & Approved by MCERTS Level Two Technical Endorsements TE1, TE2, TE3 & TE4			
	Jon Litterick	Name:	Andy Barnes		
Name:		MCERTS No:	MM 03 235		
		Signature:	SPE		
Date:	19/11/14	Date:	24/11/14		

This report is not to be used for contractual or engineering purposes unless this approval sheet is signed where indicated by the approver and the report is designated "FINAL".

: R001

Installation Name : Ma Visit Details : Ar Survey Dates : 4tl Report Issue Date. : 24

: Manufacturing Main Vent : Annual Compliance – 2014 : 4th November 2014 : 24th November 2014

This report has been prepared by Environmental Compliance Limited (ECL) in their professional capacity as Environmental Consultants. The contents of the report reflect the conditions that prevailed and the information available or supplied at the time of its preparation. The report, and the information contained therein, is provided by ECL solely for use and reliance by the Client in performance of ECLs duties and liabilities under its contract with the Client. Until ECL has received payment in full as detailed in the quotation or contract the contents of this report remain the legal property of ECL. The contents of the report do not, in any way, purport to include any manner of legal advice or opinion.

Should the Client wish to release this report to a Third Party for the party's reliance, Environmental Compliance Ltd may, at its discretion, agree to such release provided that:

- Environmental Compliance Ltd gives written agreement prior to such release and ECL has received payment in full for all works/services undertaken;
- By release of the report to the Third Party, that Third Party does not acquire any rights, contractual or otherwise, whatsoever against Environmental Compliance Ltd and, accordingly, Environmental Compliance Ltd assume no duties, liabilities or obligations to that Third Party;
- Environmental Compliance Ltd accepts no responsibility for any loss or damage incurred by the Client or for any conflict of Environmental Compliance Ltd interests arising out of the Clients' release of this report to the Third Party.

In the event that a report is revised and re-issued, the client shall ensure that any earlier versions of the report, and any copies thereof, are void and such copies should be marked with the words "superseded and revised".

Opinions and Interpretation expressed within this report are outside the scope of the UKAS accreditation.

MCERTS requirements mean that comparison of results with emissions limit values is not permitted within this report.

: R001

Installation Name Visit Details Survey Dates Report Issue Date. : Manufacturing Main Vent : Annual Compliance – 2014 : 4th November 2014 : 24th November 2014

TABLE OF CONTENTS

Section	Description	Page Number
	Document Control Sheet	
PART 1	EXECUTIVE SUMMARY	4
		4
1	MONITORING OBJECTIVES	4
1.1	Monitoring Results	5
1.2	Operating Information	6
2	MONITORING DEVIATIONS	7
PART 2	SUPPORTING INFORMATION	8
3	SAMPLING STAFF DETAILS	8
4	SAMPLING PROTOCOLS / METHODOLOGIES	9
5	SAMPLE POINT DESCRIPTIONS	11
	EQUIPMENT IDs	12
	FIGURES	14
	TABLES	16
	VELOCITY TRAVERSE PROFILES	20
	FIELD CALIBRATION AND SAMPLING DATA	22
	LABORATORY ANALYSIS RESULTS	27
	UNCERTAINTY CALCULATIONS	30
		30

4)/08 : R001 Installation Name Visit Details Survey Dates Report Issue Date. : Manufacturing Main Vent : Annual Compliance – 2014 : 4th November 2014 : 24th November 2014

PART 1 - EXECUTIVE SUMMARY

1 Monitoring Objectives

Environmental Compliance Ltd (ECL) was commissioned by Linx Printing Technologies Ltd to undertake an emission monitoring survey at their Ink Manufacturing site in St Ives. This report presents the findings of the study.

The monitoring at this installation was carried out in accordance with our quotation reference **PC/P2208/Q001**, for compliance check monitoring of emissions to air. The substances requested for monitoring at each emissions point are listed below:

Substances to be monitored	Emission Point Identification
	Ink Manufacture – Main Vent
Particulates	• U
Total Organic Carbon (TVOC)	• U

- Denotes the substances to be monitored.
 - Denotes UKAS accreditation is held for monitoring that substance, but does not mean that it has been claimed which will depend on whether the testing could be completed in accordance with the Standard Reference Method.

Special Requirements: "Test TVOC for full 8 hours"

Linx Printing Te	chnologies Ltd		Installation Name	: Manufacturing Main Vent
Permit No	: B04/94		Visit Details	: Annual Compliance – 2014
Variation No	: PPC10/08		Survey Dates	: 4th November 2014
Report Ref	: P2208	: R001	Report Issue Date.	: 24th November 2014

1.1 Monitoring Results

Emission Point Reference	Substance to be Moni	tored	Emission Limit Value	Periodic Monitoring Result	Units	Uncertainty %	Reference Conditions 273 K, 101.3 kPa	Date of Sampling	Start and End Times	Monitoring Method Reference	Accreditation for use of Method	Tick if non- conforming test (see Sections 2 & 5)	Operating Status
Ink	Particulates	\$	20	0.68	mg/m ³	21	& Wet Gas	04/11/14	09:10 - 11:10	BS EN 13284-1	UKAS / MCERTS	✓	
Manufacture –	Particulates	\$	20	1.82	mg/m ³	8	& Wet Gas	04/11/14	11:15 – 13:15	BS EN 13284-1	UKAS / MCERTS	1	Normal
Main Vent	TVOC as Carbon	1	150	109.4	mg/m ³	2	& Wet Gas	04/11/14	08:20 – 16:19	BS EN 12619:2013	UKAS / MCERTS		

Notes

The uncertainty figure presented in Table 1.1 for TVOC is the "measurement uncertainty" figure, which does not take into account the variability of the measured sample values. The "uncertainty of measurement results" figure, which does include this contribution, is also presented in the appendices of the report.

<u>Notes</u>

Emission Limit Value	The emission limit value is that stated in the permit and will be expressed as a concentration or a mass emission.
Periodic Monitoring Result	The result given is expressed in the same terms and units as the emission limit value.
Uncertainty	The uncertainty associated with the quoted result is at the 95% confidence interval. The Uncertainty results DO NOT take into account the effect of the sample location limitations.
Reference Conditions	All results are expressed at 273 K and 101.3kPa. The oxygen and moisture corrections are stated.
Monitoring Method Reference	The method stated is in accordance with the Environment Agency Technical Guidance Note M2, or other method approved by the Environment Agency.
Accreditation for use of Method	The details indicate the accreditation for the use of the complete monitoring method, e.g. MCERTs, UKAS. If use of the method is not accredited " NA" is stated.
Operating Status	The details indicate the feedstock and the loading rate of the plant during monitoring.
\$ ' 0	Chemical Analysis on sample reagents was performed by an External Laboratory as detailed in Section 4
NU	UKAS Accreditation Held but UKAS Accreditation cannot be claimed for the test as sampling did not comply with the Standard Reference Method (SRM), see section 2 & 5
NA	Method is NOT UKAS Accredited.

Linx Printing Te	chnologies Ltd		Installation Name	: Manufacturing Main Vent
Permit No	: B04/94		Visit Details	: Annual Compliance – 2014
Variation No	: PPC10/08		Survey Dates	: 4th November 2014
Report Ref	: P2208	: R001	Report Issue Date.	: 24th November 2014

1.2 Operating Information

Emission Point							Comparison of Operator CEMS and Periodic Monitoring Results					ts
Reference	Process Type	Process Duration	Fuel	Feedstock	Abatement	Load	Parameter	Date	Time	CEMS Results	Periodic Monitoring Results	Units
Main Vent	Batch	08:00 - 16:30	n/a	n/a	None	Normal				n/a		

Notes:

Process Type	State whether the process is a continuous or batch process.
Process Duration	If a batch process, state the duration, frequency and details of the portion of the batch sampled. If continuous state "NA"
Fuel	If applicable, state the fuel type If not applicable state "NA"
Feedstock	State the feedstock type
Abatement	State the type and whether operational during monitoring. If not applicable state "NA"
Load	State the normal load, throughput or rating of the plant
CEMS Data	Enter this data for each CEM installed if it is has been provided by operator otherwise state "NP" (NOT PROVIDED)

Installation Name Visit Details Survey Dates Report Issue Date. : Manufacturing Main Vent : Annual Compliance – 2014 : 4th November 2014 : 24th November 2014

2 Monitoring Deviations

: R001

The objective of the survey was to measure the concentrations of pollutants from the processes / locations as detailed in Section 1. This survey meets the requirements of the site's **PPC Permit Number: B04/94** where UKAS and MCERTS accreditation has and could be claimed for the testing in the monitoring results table.

There were no modifications to the sampling procedures (TPDs) listed in section 4.

There were no substance deviations from the original and agreed emissions monitoring schedule.

Non-conforming tests are as follows:-

Particulate samples were made from centre point only, whereas BS EN 13284 stipulates 5 sample points for a duct with this diameter (500mm). This deviation was made for safety reasons, as there are no internally threaded sample ports available so securing the probe at all the sample points was not possible. This non-conformity does not alter the accreditation status of the tests.

The Uncertainty of the reported concentrations for these pollutant results DOES NOT take into account the effect of these non-conformities or sample location limitations.

Homogeneity tests have/ have not been completed and are not applicable to this location as the duct area is $<1m^2$.

4 0/08 3 : R001 Installation Name Visit Details Survey Dates Report Issue Date. : Manufacturing Main Vent : Annual Compliance – 2014 : 4th November 2014 : 24th November 2014

PART 2 – SUPPORTING INFORMATION

3

SAMPLING STAFF DETAILS

Site Sampling Team

Names of Site Team	Dates on Site	MCERTS No.	LEVEL	Technical Endorsements
Andy Barnes	04/11/14	MM 03 235	2	TE1, TE2, TE3, TE4

Report Reviewer

Name	MCERTS No.	LEVEL	Technical Endorsements
Andy Barnes	MM 03 235	2	TE1, TE2, TE3, TE4

Technical Endorsement Key:-

TE1 – Isokinetic Particulates, Temperature & Velocity Profiles, Oxygen.

TE2 - Isokinetic Extractive Pollutants:- Metals, Dioxin & Furans, PAHs, PCBs, HCI, HF.

TE3 – **Non-Isokinetic** Extractive Pollutants:- Speciated VOCs, HF, HCl, Cyanide.

TE4 – Continuous Analysers (Combustion Gases):- TVOC, CO, NOx, SO2.

LIU //08 : R001 Installation Name Visit Details Survey Dates Report Issue Date. : Manufacturing Main Vent : Annual Compliance – 2014 : 4th November 2014 : 24th November 2014

4 SAMPLING PROTOCOLS / METHODOLOGIES

Any required modifications to the Technical Procedure Documents (TPDs) specified below will be detailed in section 2 of this report.

TVOC as Carbon

Testing was carried out using an MCERTS Certified Signal 3030PM FID and heated gas sample line, with reference to the manufacturer's operation handbook, **BS EN 12619:2013** and in-house technical procedure **ECL/TPD/032A**.

The analyser was calibrated on site using certified propane span gases, (made up in synthetic air) which are traceable to ISO 17025 standard. (with uncertainty <2%).

Zero measurements were performed using synthetic air zero gas, with TVOC content less than 0.2 mg/m^3 (or purity greater than 99.998%).

The analyser was calibrated directly into the sample inlet and then checked through the entire sampling system (including sampling probe, heated filter and heated gas transport lines). Data was corrected by molecular weight to TVOCs as total carbon.

Data was recorded as minute averages over each test period. The data is presented in the Figures Section and the minute averaged data is detailed in the Tables Section.

Pressure, Temperature and Velocity

Testing was carried out using a sampling system in accordance with **BS EN 13284-1 & MID** and In-house technical procedure **ECL/TPD/022.**

Temperature was recorded using a thermocouple and digital temperature reader.

Velocity and pressure were recorded using an "L" type pitot and digital manometer, data being recorded in Pascals.

Installation Name Report Issue Date.

: Manufacturing Main Vent : Annual Compliance - 2014 : 4th November 2014 : 24th November 2014

Particulates

: R001

Testing was carried out using a Manual Stack Sampling system in accordance with BS EN 13284-1 & MID and In-house technical procedure ECL/TPD/027A

Visit Details

Survey Dates

Isokinetic particulate sampling is achieved when the velocity of gas entering the sampling nozzle is exactly equal to the velocity of the approaching gas stream within the stack.

A measured volume of sample gas is withdrawn from the stack isokinetically through a sampling nozzle and through 37mm pre-weighed and pre-blown Quartz filter positioned in an unheated housing inserted into the stack.

Particulate matter is collected on the filter. Following testing the front half of the filter housing, probe (out-stack sampling only) and the sample nozzle are rinsed to remove any particulate matter which, may have impacted on the surfaces during testing. The dry residue of the Acetone used for rinses is <5mg/l. The filters and rinses are subsequently analysed to determine the amount of particulate matter captured.

The standard pre-sample conditioning temperature of the filters is 180°C and the standard post-sample conditioning temperature is 160°C. (Any modifications to this are noted in section 2 of this report). Apparent weights are corrected, if required, based on the weights of three control filters and evaporating basins which are weighed (pre and post sampling) with each batch of filters & rinses.

Scientific Analysis Laboratories Ltd (SAL) who are situated in Manchester carried out the analysis of the samples. SAL are UKAS accredited for this analysis. In addition to the survey samples, appropriate field blanks are submitted as part of the technical procedure.

Installation Name Visit Details Survey Dates Report Issue Date. : Manufacturing Main Vent : Annual Compliance – 2014 : 4th November 2014 : 24th November 2014

5 SAMPLE POINT DESCRIPTIONS

: R001

The homogeneity test is applicable to combustion processes. This includes but is not restricted to, those regulated under the Waste Incineration Directive (**WID**) and the Large Combustion Plant Directive (**LCPD**).

Homogeneity testing has not been completed at this location. The test is not usually required for stacks with sampling plane areas of $<1m^2$ (below 1.13m in diameter for circular ducts).

The sample location that was monitored is detailed below:-

Ink Manufacture – Main Vent

The sampling plane is in long straight vertical section of the emissions stack.

The diameter at the sample plane is 0.5m.

The flow characteristics meet the *requirements* of the standard.

2 x 2" ports are available and are located as per the requirements of BS EN 13284.

The equipment is set up at ground level, with probes raised to the sample plane (<5m) via temporary access.

Samples for Particulates are non-conforming tests, due to the fact that not all the designated sample points on the sample plane could be used. Whilst it was possible to safely reach both ports for the purposes of the pitot traverse, there was no safe way to support the probe in Port B for particulate sampling, and in port A, the probe was fixed at a single (centre) point in the duct. This non-conformity does not alter the accreditation status of the tests.

The Uncertainty of the reported concentrations for these pollutant results DOES NOT take into account the effect of these non-conformities or sample location limitations.

Linx Printing Technologies Ltd Permit No : B04/94 Variation No : PPC10/08 Report Ref : P2208

: R001

Installation Name Visit Details Survey Dates Report Issue Date. : Manufacturing Main Vent : Annual Compliance – 2014 : 4th November 2014 : 24th November 2014

EQUIPMENT IDs (Pre site checklist from SSP)

: R001

 Installation Name
 : Manufacturing Main Vent

 Visit Details
 : Annual Compliance – 2014

 Survey Dates
 : 4th November 2014

 Report Issue Date.
 : 24th November 2014

PRE SITE EQUIPMENT CHECKLIST/ EQUIPMENT USED (Completed before departure to site and when on site in full)

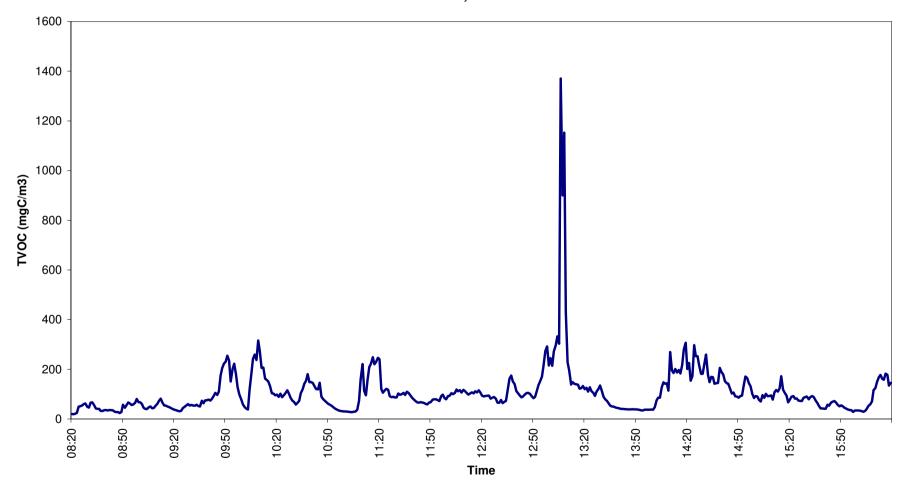
Equipment	Equip. Type	ID No:	ID No:	ID No:	ID No:	ID No:	ID No:	ID No:	ID No:
MST console/pump MST Nozzle set MST "S" Type Pitot MST Probe MST Hot Box MST Impinger Arm Barometer Site Balance Site Check weights	E001	351							
Horiba Heated Probe / Filter Chiller Sonimix Heated Line	E002								
FID Heated Line Heated Probe / Filter	E003	516 354 919	355						
Testo	E004								
FTIR Heated Probe / Filter Heated Line	E005								
Stackmite "L" Type Pitot Digital Manometer Stack Thermocouple Thermocouple Reader Nozzle Set	E006	367 489 421 464 370 802							
Workhorse Pumps Low Flow Pumps	E007								

Quantity of Ice Required / Used for Survey ZERO

Bags (2kg bags)

Linx Printing Technologies Ltd Permit No : B04/94 Variation No : PPC10/08 Report Ref : P2208

: R001


Installation Name Visit Details Survey Dates Report Issue Date. : Manufacturing Main Vent : Annual Compliance – 2014 : 4th November 2014 : 24th November 2014

FIGURES

Linx Printing Te	chnologies Ltd		Installation Name	: Manufacturing Main Vent
Permit No	: B04/94		Visit Details	: Annual Compliance – 2014
Variation No	: PPC10/08		Survey Dates	: 4th November 2014
Report Ref	: P2208	: R001	Report Issue Date.	: 24th November 2014

Figure 1

TVOC Continuous Data Recorded From - Linx Printing - Main Vent, Manufacturing. On 04/11/14, Between 08:20 & 16:19. Data Presented at 273K, 101.3kPa & Wet Gas.

Linx Printing Technologies Ltd Permit No : B04/94 Variation No : PPC10/08 Report Ref : P2208

: R001

Installation Name Visit Details Survey Dates Report Issue Date. : Manufacturing Main Vent : Annual Compliance – 2014 : 4th November 2014 : 24th November 2014

TABLES

: R001

Installation Name Visit Details Survey Dates Report Issue Date. : Manufacturing Main Vent : Annual Compliance – 2014 : 4th November 2014 : 24th November 2014

Table 1

TVOC Data Recorded from Manufacturing - Main Vent Sample Period: 08:20 – 16:19 on the 4th November 2014

Volumetric Flowrate (Reference Conditions) =

m³/sec *

0.87

	Average	Emission Rate
	mg/m ³	Kg/hr
TVOCs (as carbon)*	109.4	0.343

* Reference Conditions (273K, 101.3 kPa & Wet Gas)

: R001

Installation Name Visit Details Survey Dates Report Issue Date. : Manufacturing Main Vent : Annual Compliance – 2014 : 4th November 2014 : 24th November 2014

Table 2 – Particulates

Data Recorded from Production - Main Vent

Emission Parameter	Units	TPM 1	Blank
Stack Diameter	metres	0.50	
Area of Sample Plane	m²	0.196	
Moisture Content	%	0.09	
Oxygen Content	%	20.90	
Stack Temperature	°C	20	
Gas Velocity (at Stack Conditions)	m/sec	4.90	
Gas Velocity (Reference Conditions)	m/sec*	4.44	
Volumetric Flowrate (Stack Conditions)	m ³ /sec	0.96	
Volumetric Flowrate (Reference Conditions)	m ³ /sec*	0.87	
Sample Date		04/11/2014	
Sample Period		09:10 - 11:10	
Sample Volume (at Stack)	m ³	2.41	
Sample Volume (reference Conditions)	m ³ *	2.18	2.18
Isokinetic Sampling Rate	%	100.7	
Sample Reference (ECL ID)	ECL/14/	5150 & 5151	5154 & 5155
Mass of Particulate Matter Collected	mg	1.48	0.35
Concentration of Particulate Matter	mg/m ³ *	0.68	0.16
Emission Rate of Particulate Matter	g/hr	2.13	
Expanded Uncertainty (% Relative)	%	21	
Emission Limit Value (ELV)	mg/m ³ *	20	
Blank Concentration as Percentage of ELV	%		<1.00%

*Reference Conditions (273K, 101.3kPa, Wet Gas)

: R001

Installation Name Visit Details Survey Dates Report Issue Date. : Manufacturing Main Vent : Annual Compliance – 2014 : 4th November 2014 : 24th November 2014

Table 3 – Particulates

Data Recorded from Production - Main Vent

Emission Parameter	Units	TPM 2	Blank
Stack Diameter	metres	0.50	
Area of Sample Plane	m²	0.196	
Moisture Content	%	0.09	
Oxygen Content	%	20.90	
Stack Temperature	°C	20	
Gas Velocity (at Stack Conditions)	m/sec	4.90	
Gas Velocity (Reference Conditions)	m/sec*	4.44	
Volumetric Flowrate (Stack Conditions)	m ³ /sec	0.96	
Volumetric Flowrate (Reference Conditions)	m ³ /sec*	0.87	
Sample Date		04/11/2014	
Sample Period		11:15 - 13:15	
Sample Volume (at Stack)	m ³	2.31	
Sample Volume (reference Conditions)	m ³ *	2.09	2.09
Isokinetic Sampling Rate	%	96.4	
Sample Reference (ECL ID)	ECL/14/	5152 & 5153	5154 & 5155
Mass of Particulate Matter Collected	mg	3.80	0.35
Concentration of Particulate Matter	mg/m ³ *	1.82	0.17
Emission Rate of Particulate Matter	g/hr	5.71	
Expanded Uncertainty (% Relative)	%	8	
Emission Limit Value (ELV)	mg/m ³ *	20	
Blank Concentration as Percentage of ELV	%		<1.00%

*Reference Conditions (273K, 101.3kPa, Wet Gas)

Linx Printing Technologies Ltd Permit No : B04/94 Variation No : PPC10/08 Report Ref : P2208

: R001

Installation Name Visit Details Survey Dates Report Issue Date.

: Manufacturing Main Vent : Annual Compliance – 2014 : 4th November 2014 : 24th November 2014

VELOCITY TRAVERSE PROFILES

Linx Printing Te	chnologies Ltd		Installation Name	: Manufacturing Main Vent
Permit No	: B04/94		Visit Details	: Annual Compliance – 2014
Variation No	: PPC10/08		Survey Dates	: 4th November 2014
Report Ref	: P2208	: R001	Report Issue Date.	: 24th November 2014

En	vironmental Con	npliance Limite	ed	Traverse Data Profoma			Date of M	04/11/2014		
Company	L	inx Printing		Stack Diamet	er (mm)	500	Pitot tube coef	ficient	1.00	[
Site		St lves		Port Length (mm) Pitot ID			489	Diagram/ Description of Cross Section of Stack/Duct		
Location		Production		Duct Length	(mm) A		Stack Thermoo	ouple ID	464	
Stack		Main Vent		Duct width (m	ım) B		Stack Thermocou		370	
Job No		P2208		Barometric P	ressure. (mb)	984	Manometer ID		421	
Operators		AB		Static Pressure	. (mm H ₂ 0) (= Pa/9.81)	0.3	Barometer ID		351	
	Distance to	Davit	Temp.	(<u>A</u> P)	Swirl Test	Dent	Temp.	(<u>A</u> P)	Swirl Test	
	Point (mm)	Port	(°C)	(Pa)	⁰ From Reference	Port	(°C)	(Pa)	⁰ From Reference	500mm
	55	A1	20.0	6.0	11	B1	20.0	21.0	5	Α
	250	A2	20.0	14.0	5	-	-	-	-	
	445	A2	20.0	20.0	5	B3	20.0	8.0	10	
										В
							_			
							-			
						<u> </u>				
Total			60				40			Deviations from procedure/ non - conformities
Max			20	20.0	_		20	21.0	_	
Min			20	6.0	-		20	8.0		• • • • • • • • • • • • • • • • • • •
Average			20.0	13.3			20.00	14.50		Sample takes place from single point as difficult to secure probe.
Average temp	(K)								293	
Suitability of S	ampling Position								ack Conditons	
	nest:lowest flow p		=9:1						3.5:1	
Average devia	tion of flow from	axis <15 ⁰						ОК		Compliance With Positional Requirements?
	ea for stacks= πr							0.20		
	ea for ducts = L x) m ²	Height of sample ports from Platform 1.0m
Suitabilty of Po	osition for Sampl	ing							ОК	Number of sample ports 2
Stack Moisture		0.1	%	٦	Gas Velocity (as Mea	asured)		4.74	m/sec	Width of platform (port back to handrail) 1.5m
Measured Oxy			%	1	Gas Velocity (Refere		ns)	4.29	m/sec*	Nearest downstream disturbance Exit 5m
Measured Car		0.0	%	1	Volumetric Flowrate			0.9300	m ³ /sec	Nearest upstream disturbance Bend 2m
	ular Weight		a/a mole	1	Volumetric Flowrate			0.8418	m ³ /sec*	Disturbances are classed as bends, fans or diameter variations

*Reference Conditions: 273K, 101.3kPa, Wet Gas

Linx Printing Technologies Ltd Permit No : B04/94 Variation No : PPC10/08 Report Ref : P2208

: R001

Installation Name Visit Details Survey Dates Report Issue Date.

: Manufacturing Main Vent : Annual Compliance – 2014 : 4th November 2014 : 24th November 2014

FIELD CALIBRATION AND SAMPLING DATA

Linx Printing Technologies Ltd Permit No : B04/94 Variation No : PPC10/08 Report Ref : P2208

: R001

Installation Name Visit Details Survey Dates Report Issue Date.

: Manufacturing Main Vent : Annual Compliance – 2014 : 4th November 2014 : 24th November 2014

Propane

Span Gas

value used 944.5 ppm

Analyser Range

1000 ppm

TVOC - FIELD DATA SHEET

Client	Linx Printing			Γ	Barometric Pressure mb		984
Site	St	lves			Barometer ID	ECL/ID/ 351	
Date	04/1	1/2014			Analyser ID	ECL/ID/ 516	
Location	Proc	duction			Sonimix/ MFC ID	ECL/ID/ n/a	
Stack ID	Main Vent		ŀ	Heated Line/ Controller ID	ECL/ID/ 354 & 355		
Stack Temp °C		20			Heated Line Set Temp ℃	180	YES
Ambient Temp (sampling)	1=7 2=6	3=	8		Heated Line Length	10	m
Ambient Temp (sampling)	4=9 5=10	6=	9		Heated Probe Filter ID	ECL/ID/ 919	
Job No	Р	2208		ŀ	Heated Filter Set Temp °C	180	YES
Operators		AB			Logger ID	924	

Calibration Gas Details

Calibration Gas	Gas Bottle ID	Gas Value	Uncertainty of Gas (k=2)	
Zero Gas (Synthetic Air)	Gas/ 1399			
Hydrogen / Helium	Gas/ 1336			
Propane (In Air)	Gas/ 1312	944.5 ppm	9.4	

Analyser Range should be not less than the expected peak emissions.

Span Gas Values should be either approximately the half-hourly ELV OR 50% to 90% of the Selected Analyser Range.

		Direct	Calibration (Rear of Analyser)					
	Zero	Cal	Span C	Gas <u>Cal</u>	Zero	Check		
	Start Time	End Time	Start Time	End Time	Start Time	End Time		
ZERO /SPAN/ ZERO	07:27	07:31	07:32	07:37	07:38	07:43		

NOTE: RESPONSE TIME

Response Time to be carried out at the same time as "Span Check" on system verification (via the sample probe) Start Time = when gas turned on. 90% Time = when analyser displays 90% of span gas value used. Response must be within 200 seconds.

Pre-Cal Amb	oient Temp ℃	PRE Syste	em Verificati	ion Check (E	Down Line)		Response Tin	ne
Max	Min	Zero	Check_	Span	Check	<u>S'</u>	<u>YSTEM Span Gas</u>	s Cal
7	6	Start Time	End Time	Start Time	End Time	Start Time	90% Time	less than 200s (Y/N)
ZERO	/ SPAN	07:44	07:49	07:51	07:56	07:50:00	07:50:30	Y
		Start Time	End Time	Loca	ation	Produc	tion Details	

Sample Period	08:20	16:20	Main Vent	Normal
Sample Period				

Post-Cal Amb	oient Temp ℃	POST System Verification Check (Down Line)							
Max	Min	Zero	Check	Span	Check				
9	8	Start Time	End Time	Start Time	End Time				
ZERO	SPAN	16:28	16:33	16:34	16:39				

Process Details / Comments

Linx Printing Technologies Ltd Permit No : B04/94 Variation No : PPC10/08 Report Ref : P2208

: R001

Installation Name Visit Details Survey Dates Report Issue Date.

: Manufacturing Main Vent : Annual Compliance – 2014 : 4th November 2014 : 24th November 2014

Calibratio	n Summary	TVOC ppm				
Analys	er Range	1000				
Repeatab	oility at Zero	2				
Span Gas Conc	entration Applied	944.5				
Zero Gas Conc	entration Applied	0				
	Zero	0.00				
Direct Cal	Span	944.5				
	Zero	0.48				
Differer	nce (Zero)	0.4801				
<2×Repeata	<2×Repeatability @ Zero?					
Pre Test (System)	Zero	0.20				
Fie lest (System)	Span	945.2				
Differer	nce (Zero)	0.2021				
<2% Relative	to Direct Span	YES				
Differen	ce (Span)	0.6570				
<2% Relative	to Direct Span	YES				
Post Test (System)	Zero	1.15				
	Span	944.2				
Differer	nce (Zero)	0.9450				
Zero Drift <2%	of Applied Span?	YES				
Differen	ce (Span)	0.9602				
Span Drift <2%	of Applied Span?	YES				
Zero and Span Drift	<5% of Applied Span?	YES				

Linx Printing Tee	chnologies Ltd		Installation Name	: Manufacturing Main Vent
Permit No	: B04/94		Visit Details	: Annual Compliance – 2014
Variation No	: PPC10/08		Survey Dates	: 4th November 2014
Report Ref	: P2208	: R001	Report Issue Date.	: 24th November 2014

Environm	nental Compliar	nce Limited		PARTI	CULATE DATA	SAMPLING PR	OFORMA	Date of M	easurement	04/11/2014			
	ECL/TPD/	1	27a	Time taken t	o change Ports	?	Start Time	09:10	End Time	11:10	Du	ration (mins)	120
Client		Linx	Printing	Stack Profile		Circular	Pitot		489	Stack Thermocouple ID	464	Impingoro	n/a
Site			Ives	Stack Profile Stack Area (n	2	0.20	Manome		489	Stack Temp Reader ID	370	Impingers SOL/	n/a n/a
Location			duction	Barometric P		984	Barome		351	Meter Thermocouple ID	367	Start Weight (g)	0.00
Stack ID			n Vent		m H ² 0) (Pa/9.81)	0.3	DGM		0.9814	Meter Temp Reader ID	367	End Weight (g)	1.50
Test No.			PM 1	Pitot coefficie		1	Nozzle	e ID	802	Dry Gas Meter ID	367	Total weight (g)	1.50
Job No		P	2208	Balance ID		n/a	Nozzle Siz	ze (mm)	9.29	Timer ID	367		
ECL Site Sta	aff		AB	Console ID		367	Filter	ID	40	Rotameter ID	367	If moisture was	
						_						-	dried before
	Sample	Leak 1	Leak 2	Leak 3	Leak 4		Total		Volume (litres	@ STP Dry		entering the gas	
Start Volume	1651651.0								ample Volume	2163.74		weights must	
Final Volume	1654120.0								mple Volume	2179.41		produce th	
Total Volume	2469.0	0.0	0.0	0.0	0.0	l I	2469.0	Isokinetic	Percentage	100.72			n used in the
					ï							isokinetic calcu	
Leak Check	First	Second	Third	Final	Maximum allowed leak	Measured O ₂	20.90	-	isture	0.09		-	dried before it
Leak Rate I/min	0.1			0.1	rate is 2% of the	Measured CO ₂ %		R	ef O ₂	11			as meter then
Set Rate (I/min)	25			25	set rate	Measured CO ppm		Dry Gas Mo	lecular Weight	28.84			ights may be
Time Of Leak Check	09:00			11:12					¥			included to pro	
Leak % of set rate	0.4			0.4	TPD/27A is	carried out y	with an unho	atod samr	ling eveter	nonly		0.1% mois	ture value.
Leak /0 01 Set Tate	0.4			0.4				ateu samp	Jing System	i oniy.			
Traverse Point		CP	CP	CP	СР	CP	CP	СР	СР	Total			
Time Interval (mins)		5	5	5	5	5	5	5	5			Acetone SOL/	2582
Time/Point (mins)		0 - 5	5 - 10	10 - 15	15 - 20	20 - 25	25 - 30	30 - 35	35 - 40			DI Rinse SOL/	2601
ΔP (Pa)		14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.0			
Velocity at Stack (m/s)		4.90	4.90	4.90	4.90	4.90	4.90	4.90	4.90				
Sample Rate (I/min) 101.3 mbar,	Tm, Dry Gas	18.2	18.3	18.4	18.5	18.6	19.0	19.1	19.2	18.7			vrate Settings
Meter (Tm)		3.00	4.00	5.00	7.00	9.00	14.00	16.00 20.00	18.00	9.5 20.0		Tm T-	30 20
Stack Temp (Ts)		20.00	20.00	20.00	20.00	20.00	20.00						
Traverse Point								20.00	20.00	20.0		Ts % moisture	
		CP	СР	CP	СР	СР	СР	CP	20.00 CP	Total		1 s % moisture	0.1
Time Interval (mins)		CP 5	CP 5	CP 5	CP 5	CP 5	СР 5						
								СР	СР				
Time Interval (mins) Time/Point (mins) ΔP (Pa)		5 40 - 45 14.00	5 45 - 50 14.00	5 50 - 55 14.00	5 55 - 60 14.00	5 60 - 65 14.00	5 65 - 70 14	CP 5 70 - 75 14	CP 5 75 - 80 14				
Time Interval (mins) Time/Point (mins) ΔΡ (Pa) Velocity at Stack (m/s)		5 40 - 45 14.00 4.90	5 45 - 50 14.00 4.90	5 50 - 55 14.00 4.90	5 55 - 60 14.00 4.90	5 60 - 65 14.00 4.90	5 65 - 70 14 4.90	CP 5 70 - 75 14 4.90	CP 5 75 - 80 14 4.90	Total 			
Time Interval (mins) Time/Point (mins) ΔΡ (Pa) Velocity at Stack (m/s) Sample Rate (l/min) 101.3 mbar,	Tm, Dry Gas	5 40 - 45 14.00 4.90 19.3	5 45 - 50 14.00 4.90 19.4	5 50 - 55 14.00 4.90 19.6	5 55 - 60 14.00 4.90 19.6	5 60 - 65 14.00 4.90 19.7	5 65 - 70 14 4.90 19.8	CP 5 70 - 75 14 4.90 19.9	CP 5 75 - 80 14 4.90 20.0	Total 14.0 19.7			
Time Interval (mins) Time/Point (mins) ΔP (Pa) Velocity at Stack (m/s) Sample Rate (//min) 101.3 mbar, Meter (Tm)	Tm, Dry Gas	5 40 - 45 14.00 4.90 19.3 19.00	5 45 - 50 14.00 4.90 19.4 21.00	5 50 - 55 14.00 4.90 19.6 23.00	5 55 - 60 14.00 4.90 19.6 24.00	5 60 - 65 14.00 4.90 19.7 25.00	5 65 - 70 14 4.90 19.8 27	CP 5 70 - 75 14 4.90 19.9 29	CP 5 75 - 80 14 4.90 20.0 30	Total 14.0 19.7 24.8			
Time Interval (mins) Time/Point (mins) ΔΡ (Pa) Velocity at Stack (m/s) Sample Rate (l/min) 101.3 mbar,	Tm, Dry Gas	5 40 - 45 14.00 4.90 19.3	5 45 - 50 14.00 4.90 19.4	5 50 - 55 14.00 4.90 19.6	5 55 - 60 14.00 4.90 19.6	5 60 - 65 14.00 4.90 19.7	5 65 - 70 14 4.90 19.8	CP 5 70 - 75 14 4.90 19.9	CP 5 75 - 80 14 4.90 20.0	Total 14.0 19.7			
Time Interval (mins) Time/Point (mins) ΔP (Pa) Velocity at Stack (m/s) Sample Rate (l/min) 101.3 mbar, Meter (Tm) Stack Temp (Ts)	Tm, Dry Gas	5 40 - 45 14.00 4.90 19.3 19.00 20.00	5 45 - 50 14.00 4.90 19.4 21.00 20.00	5 50 - 55 14.00 4.90 19.6 23.00 20.00	5 55 - 60 14.00 4.90 19.6 24.00 20.00	5 60 - 65 14.00 4.90 19.7 25.00 20.00	5 65 - 70 14 4.90 19.8 27 20	CP 5 70 - 75 14 4.90 19.9 29 20	CP 5 75 - 80 14 4.90 20.0 30 20	Total 14.0 19.7 24.8 20.0			
Time Interval (mins) Time/Point (mins) ΔP (Pa) Velocity at Stack (m/s) Sample Rate (l/min) 101.3 mbar, Meter (Tm) Stack Temp (Ts) Traverse Point	Tm, Dry Gas	5 40 - 45 14.00 4.90 19.3 19.00 20.00 CP	5 45 - 50 14.00 4.90 19.4 21.00 20.00 CP	5 50 - 55 14.00 4.90 19.6 23.00 20.00 CP	5 55 - 60 14.00 4.90 19.6 24.00 20.00	5 60 - 65 14.00 4.90 19.7 25.00 20.00	5 65 - 70 14 4.90 19.8 27 20 CP	CP 5 70 - 75 14 4.90 19.9 29 20 CP	CP 5 75 - 80 14 4.90 20.0 30 20 CP	Total 14.0 19.7 24.8			
Time Interval (mins) Time/Point (mins) ΔP (Pa) Velocity at Stack (m/s) Sample Rate (/min) 101.3 mbar, Meter (Tm) Stack Temp (Ts) Traverse Point Time Interval (mins)	Tm, Dry Gas	5 40 - 45 14.00 4.90 19.3 19.00 20.00 CP 5	5 45 - 50 14.00 4.90 19.4 21.00 20.00 CP 5	5 50-55 14.00 4.90 19.6 23.00 20.00 CP 5	5 55 - 60 14.00 19.6 24.00 20.00 CP 5	5 60 - 65 14.00 4.90 19.7 25.00 20.00 CP 5	5 65 - 70 14 4.90 19.8 27 20 CP 5	CP 5 70 - 75 14 4.90 19.9 29 20 CP 5	CP 5 75 - 80 14 4.90 20.0 30 20 CP 5	Total 14.0 19.7 24.8 20.0			
Time Interval (mins) Time/Point (mins) ΔP (Pa) Velocity at Stack (m/s) Sample Rate (l/min) 101.3 mbar, Meter (Tm) Stack Temp (Ts) Traverse Point Time Interval (mins) Time /Point (mins)	Tm, Dry Gas	5 40 - 45 14.00 4.90 19.3 19.00 20.00 CP 5 80 - 85	5 45 - 50 14.00 4.90 19.4 21.00 20.00 CP 5 85 - 90	5 50 - 55 14.00 4.90 19.6 23.00 20.00 CP 5 90 - 95	5 55 - 60 14.00 19.6 24.00 20.00 CP 5 95 - 100	5 60 - 65 14.00 4.90 19.7 25.00 20.00 CP 5 100 - 105	5 65 - 70 14 4.90 19.8 27 20 CP 5 105 - 110	CP 5 70 - 75 14 4.90 19.9 29 20 CP 5 110 - 115	CP 5 75 - 80 14 4.90 20.0 30 20 20 CP 5 115 - 120	Total 14.0 19.7 24.8 20.0 Total			
Time Interval (mins) Time/Point (mins) <u>AP</u> (Pa) Velocity at Stack (m/s) Sample Rate (/min) 101.3 mbar, Meter (Tm) Stack Temp (Ts) Traverse Point Time Interval (mins)	Tm, Dry Gas	5 40 - 45 14.00 4.90 19.3 19.00 20.00 CP 5	5 45 - 50 14.00 4.90 19.4 21.00 20.00 CP 5	5 50-55 14.00 4.90 19.6 23.00 20.00 CP 5	5 55 - 60 14.00 19.6 24.00 20.00 CP 5	5 60 - 65 14.00 4.90 19.7 25.00 20.00 CP 5	5 65 - 70 14 4.90 19.8 27 20 CP 5	CP 5 70 - 75 14 4.90 19.9 29 20 CP 5	CP 5 75 - 80 14 4.90 20.0 30 20 CP 5	Total 14.0 19.7 24.8 20.0			
Time Interval (mins) Time/Point (mins) ΔP (Pa) Velocity at Stack (m/s) Sample Rate (l/min) 101.3 mbar, Meter (Tm) Stack Temp (Ts) Traverse Point Time Interval (mins) Time /Point (mins) ΔP (Pa)		5 40 - 45 14.00 4.90 19.3 19.00 20.00 CP 5 80 - 85 14	5 45 - 50 14.00 4.90 19.4 21.00 20.00 CP 5 85 - 90 14	5 50 - 55 14.00 4.90 19.6 23.00 20.00 CP 5 90 - 95 14	5 55 - 60 14.00 4.90 19.6 24.00 20.00 CP 5 95 - 100 14	5 60 - 65 14.00 4.90 19.7 25.00 20.00 CP 5 100 - 105 14	5 65 - 70 14 4.90 19.8 27 20 CP 5 105 - 110 14	CP 5 70-75 14 4.90 19.9 29 20 CP 5 110-115 14	CP 5 75 - 80 14 4.90 20.0 30 20 20 CP 5 115 - 120 14	Total 14.0 19.7 24.8 20.0 Total			
$\begin{array}{l} \label{eq:constraints} \hline Time Interval (mins) \\ Time/Point (mins) \\ \Delta P (Pa) \\ Velocity at Stack (m/s) \\ Sample Rate (l/min) 101.3 mbar, \\ Meter (Tm) \\ Stack Temp (Ts) \\ \hline Traverse Point \\ \hline Time Interval (mins) \\ \hline Time Point (mins) \\ \Delta P (Pa) \\ Velocity at Stack (m/s) \\ \end{array}$		5 40 - 45 14.00 4.90 19.3 19.00 20.00 CP 5 80 - 85 14 4.90	5 45 - 50 14.00 4.90 19.4 21.00 20.00 CP 5 85 - 90 14 4.90	5 50 - 55 14.00 19.6 23.00 20.00 CP 5 90 - 95 14 4.90	5 55 - 60 14.00 4.90 19.6 24.00 20.00 20.00 CP 5 95 - 100 14 4.90	5 60 - 65 14.00 4.90 19.7 25.00 20.00 CP 5 100 - 105 14 4.90	5 65 - 70 14 4.90 19.8 27 20 CP 5 105 - 110 14 4.90	CP 5 70-75 14 4.90 19.9 29 20 20 CP 5 110-115 14 4.90	CP 5 75 - 80 14 4.90 20.0 30 20 CP 5 115 - 120 14 4.90	Total 14.0 19.7 24.8 20.0 Total 14.0 10 10 10 10 10 10 10 10 10 10 10 10 10			

Linx Printing Tee	chnologies Ltd		Installation Name	: Manufacturing Main Vent
Permit No	: B04/94		Visit Details	: Annual Compliance – 2014
Variation No	: PPC10/08		Survey Dates	: 4th November 2014
Report Ref	: P2208	: R001	Report Issue Date.	: 24th November 2014

Environm	nental Compliar	ice Limited		PARTI	CULATE DATA	SAMPLING PR	OFORMA	Date of M	easurement	04/11/2014			
	ECL/TPD/		27a	Time taken t	to change Ports	?	Start Time	11:15	End Time	13:15	Du	ration (mins)	120
Client		Linv	Printing	Stack Profile		Circular	Pitot		489	Stack Thermocouple ID	464	Impingers	n/a
Site			lves	Stack Profile		0.20	Manome		409	Stack Temp Reader ID	370	SOL/	n/a
Location			duction	Barometric P		984	Barome		351	Meter Thermocouple ID	367	Start Weight (g)	0.00
Stack ID			n Vent		m H ² 0) (Pa/9.81)	0.3	DGM		0.9814	Meter Temp Reader ID	367	End Weight (g)	1.50
Test No.		T	PM 2	Pitot coefficie		1	Nozzl	e ID	802	Dry Gas Meter ID	367	Total weight (g)	1.50
Job No		Р	2208	Balance ID		n/a	Nozzle Si	ze (mm)	9.29	Timer ID	367		
ECL Site Sta	aff		AB	Console ID		367	Filter	ID	41	Rotameter ID	367	If moisture wa	
				-		_	B		•		_	and gas was	dried before
	Sample	Leak 1	Leak 2	Leak 3	Leak 4	1	Total		Volume (litres)@STP Dry		entering the gas	
Start Volume	1654135.0							Expected S	ample Volume	2163.68		weights must	be included to
Final Volume	1656607.0							Actual Sa	mple Volume	2085.13		produce th	e moisture
Total Volume	2472.0	0.0	0.0	0.0	0.0		2472.0	Isokinetic	Percentage	96.37		concentratio	n used in the
												isokinetic calc	ulations. If th
Leak Check	First	Second	Third	Final	Maximum	Measured O ₂	20.90	Mo	oisture	0.09		gas was not	dried before it
Leak Rate I/min	0.1			0.1	allowed leak	Measured CO ₂ %		R	ef O ₂	11		entered the g	as meter then
Set Rate (I/min)	25			25	rate is 2% of the set rate	Measured CO ppm		Dry Goo Mo	lecular Weight	28.84		impinger we	ights may be
. ,	-				Set late			Dry Gas Mo	necular weight	20.04		included to pro	duce a nomina
Time Of Leak Check	11:14			13:16								0.1% mois	ture value.
Leak % of set rate	0.4			0.4	TPD/27A is	carried out v	vith an unhe	ated samp	oling system	n only.			
Traverse Point		СР	СР	CP	СР	CP	CP	CP	CP	Total			
Time Interval (mins)		5	5	5	5	5	5	5	5			Acetone SOL/	2582
Time/Point (mins)		0 - 5	5 - 10	10 - 15	15 - 20	20 - 25	25 - 30	30 - 35	35 - 40			DI Rinse SOL/	2601
∆P (Pa)		14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.0			
Velocity at Stack (m/s)		4.90	4.90	4.90	4.90	4.90	4.90	4.90	4.90				
Sample Rate (l/min) 101.3 mbar,	Tm, Dry Gas	20.1	20.2	20.2	20.3	20.3	20.3	20.3	20.3	20.3			rate Settings
Meter (Tm)		32.00	33.00	33.00	34.00	34.00	34.00	35.00	35.00	33.8		Tm	30
Stack Temp (Ts)		20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.0		Ts % moisture	20 0.1
Traverse Point		СР	СР	CP	СР	СР	СР	СР	CP	Total		70 molocure	0.1
Time Interval (mins)		5	5	5	5	5	5	5	5				
Time/Point (mins)		40 - 45	45 - 50	50 - 55	55 - 60	60 - 65	65 - 70	70 - 75	75 - 80				
ΔP (Pa)		14.00	14.00	14.00	14.00	14.00	14	14	14	14.0			
Velocity at Stack (m/s)		4.90	4.90	4.90	4.90	4.90	4.90	4.90	4.90				
Sample Rate (l/min) 101.3 mbar,	Tm, Dry Gas	20.3	20.3	20.3	20.3	20.3	20.4	20.4	20.4	20.4			
Meter (Tm)		35.00	35.00	35.00	35.00	35.00	36	36	36	35.4			
Stack Temp (Ts)		20.00	20.00	20.00	20.00	20.00	20	20	20	20.0			
Traverse Point		СР	СР	CP	СР	CP	CP	СР	CP	Total			
Time Interval (mins)		5	5	5	5	5	5	5	5				
Time/Point (mins)		80 - 85	85 - 90	90 - 95	95 - 100	100 - 105	105 - 110	110 - 115	115 - 120				
ΔP (Pa)		14	14	14	14	14	14	14	14	14.0			
		4.90	4.90	4.90	4.90	4.90	4.90	4.90	4.90				
Velocity at Stack (m/s)		20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5			
Velocity at Stack (m/s) Sample Rate (l/min) 101.3 mbar, "	Tm, Dry Gas												
	Tm, Dry Gas	37	37	37	38	38 20	38 20	38 20	38 20	37.6			

Linx Printing Technologies Ltd Permit No : B04/94 Variation No : PPC10/08 Report Ref : P2208

: R001

Installation Name Visit Details Survey Dates Report Issue Date.

: Manufacturing Main Vent : Annual Compliance – 2014 : 4th November 2014 : 24th November 2014

LABORATORY ANALYSIS RESULTS

Linx Printing Technologies Ltd Permit No : B04/94 Variation No : PPC10/08 Report Ref : P2208

95 Ltd /94 10/08 08 : R001 Installation Name Visit Details Survey Dates Report Issue Date. : Manufacturing Main Vent : Annual Compliance – 2014 : 4th November 2014 : 24th November 2014

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Scientific Analysis Laboratories Ltd

Certificate of Analysis

Hadfield House Hadfield Street Combrook Manchester M16 9FE Tel : 0161 874 2400 Fax : 0161 874 2404

Report Number: 435062-1

Date of Report: 18-Nov-2014

Customer: Environmental Compliance Ltd Unit G1 Main Avenue Treforest Industrial Estate Pontypridd CF37 5BF

Customer Contact: Mr Andrew Barnes

Customer Job Reference: P2208 Customer Purchase Order: E3370 Date Job Received at SAL: 10-Nov-2014 Date Analysis Started: 10-Nov-2014 Date Analysis Completed: 18-Nov-2014

The results reported relate to samples received in the laboratory Opinions and interpretations expressed herein are outside the scope of UKAS accreditation This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with SAL SOPs All results have been reviewed in accordance with QP22

Report checked and authorised by : Kayleigh McCann Project Manager Issued by : Kayleigh McCann Project Manager

Page 1 of 2 435062-1

Linx Printing Technologies Ltd Permit No : B04/94 Variation No : PPC10/08 Report Ref : P2208

: R001

Installation Name Visit Details Survey Dates Report Issue Date.

: Manufacturing Main Vent : Annual Compliance – 2014 : 4th November 2014 : 24th November 2014

SAL Reference:	435062								
Customer Reference:	P2208								
Filter Quartz 37mm Miscellaneous	Analysed as I	Filter Qua	urtz 37mm						
			SA	L Reference	435062 001	435062 003	435062 005	435062 007	
		Custor	ner Sampl	le Reference	ECL/14/5150	ECL/14/5152	ECL/14/5154	ECL/14/5156	5
				Test Sample	AR	AR	AR	AR	
		-	D	ate Sampled	04-NOV-2014	04-NOV-2014	04-NOV-2014	04-NOV-2014	4
Determinand	Method	LOD	Units	Symbol					
Particulates (Total)	Grav (5 Dec)	0.05	mg	U	0.38	3.5	< 0.05	< 0.05	
SAL Reference: Customer Reference: Wash(Acetone)		Wash(Ac	etone)						-
Miscellaneous									

			SA	L Reference	435062 002	435062 004	435062 006	435062 008	435062 009
		Custor	ner Sampl	e Reference	ECL/14/5151	ECL/14/5153	ECL/14/5155	ECL/14/5157	ECL/14/5158
				Test Sample	AR	AR	AR	AR	AR
			D	ate Sampled	04-NOV-2014	04-NOV-2014	04-NOV-2014	04-NOV-2014	04-NOV-2014
Determinand	Method	LOD	Units	Symbol		-			
Particulates (Total)	Grav	03	ma	EL.	11	<0.3	<0.3	<0.3	0.6

Index to symbols used in 435062-1

AR	As Received
U	Analysis is UKAS accredited

Produced by Scientific Analysis Laboratories Ltd, Hadfield House, Hadfield Street, Cornbrook, Manchester, M16 9FE

Page 2 of 2 435062-1

Linx Printing Technologies Ltd Permit No : B04/94 Variation No : PPC10/08 Report Ref : P2208

: R001

Installation Name Visit Details Survey Dates Report Issue Date.

: Manufacturing Main Vent : Annual Compliance – 2014 : 4th November 2014 : 24th November 2014

UNCERTAINTY CALCULATIONS

: R001

: Manufacturing Main Vent : Annual Compliance – 2014 : 4th November 2014 Installation Name Visit Details Survey Dates Report Issue Date. : 24th November 2014

TVOC Measurement Uncertainty

Main Vent - TVOC - Measurement Uncertainty - Uncertainty Calculations Table 1

Performance Characteristics	Standard Uncertainty (% of Range)	Distribution	Min Certified Ranges TVOC 0 - 15 mgC/m ³
Lack of fit ⁽¹⁾	u _{lof}	Rectangular (Divisor = $\sqrt{3}$)	0.73
Span drift ⁽²⁾	$u_{d,s}$	Rectangular (Divisor = $\sqrt{3}$)	0.35
Repeatability Standard Deviation $(span)^{(3)}$	u_r	Normal (Divisor = 1)	9.93
Losses / leakage in the sample system $^{(4)}$	u_{loss}	Rectangular (Divisor = $\sqrt{3}$)	4.38
Temperature dependant span drift ⁽⁵⁾	u_t	Rectangular (Divisor = $\sqrt{3}$)	0.30
lossoforente ⁽¹⁾	u_i	Rectangular (Divisor = $\sqrt{3}$)	4.39
Uncertainty of Reference Gas ⁽⁶⁾	u _{ref}	Rectangular (Divisor = $\sqrt{3}$)	26.29

Note:

when
$$|(x_{i,max} - x_{i,adj})| = |(x_{i,min} - x_{i,adj})|$$
, then $u(x_i) = \frac{\Delta x_i}{\sqrt{3}}$

1 Expressed as a percentage of the certified range

Expressed as a percentage of the certified range
 Expressed as a percentage of the certified range
 Expressed as a percentage of the certified range
 Expressed as a percentage of the certified range
 Expressed as a percentage of the certified range
 Expressed as a percentage of the certified range

 Expressed as standard uncertainty in units of measurement i.e. mg/m³/%Vol taking account of an ad
 7 Expressed as a percentage of the certified range
 Main Vent - TVOC - Measurement Uncertainty - Uncertainty Calculations Table 2 ent i.e. mg/m³ / %Vol taking account of an additi nal uncertainty of 2% for gas blending

Performance Characteristics	Uncertainty	Value of Standard Uncertainty	0 - 15				
			mgC/m ^a				
Lack of fit	u _{lof}	$u(x_i) = \frac{u_{lof} \times R_i}{\sqrt{3}} =$	0.064				
Span drift	u _{d,s}	$u(x_i) = \frac{u_{d,s} \times R_i}{\sqrt{3}} = \sigma = \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}} = \sigma$	0.031				
Repeatability Standard Deviation (span)	<i>u</i> _{<i>r</i>}	1.49					
Losses / leakage in the sample system	u _{loss}	$u_{loss} = u(x_i) = \frac{u_{loss} \times R_i}{\sqrt{3}} =$					
Temperature dependant span drift	u_t	$u(x_{i}) = \frac{u_{i}}{100} \times R \times \sqrt{\frac{(x_{i,mer} - x_{adj})^{2} + (x_{i,mi} - x_{adj})(x_{i,mer} - x_{adj}) + (x_{i,mi} - x_{adj})^{2}}{3}}$	0.039				
Interferents	<i>u</i> _{<i>i</i>}	$u(x_i) = \frac{u_i \times R_i}{\sqrt{3}} =$	0.38				
Uncertainty of Reference Gas	u _{ref}	$u(x_i) = \frac{u_{ref}}{\sqrt{3}} =$	15.18				
Combined Standard Uncertainty		$u_{c} = \sqrt{u_{lof}^{2} + u_{d,s}^{2} + u_{r}^{2} + u_{loss}^{2} + u_{t}^{2} + u_{i}^{2} + u_{ref}^{2}}$	15.27				
Expanded measurement uncertainty (at 959	Expanded measurement uncertainty (at 95% confidence) $U_{\rm \it EXP}=2 imes u_{\rm c}$						
Applied Span Concentration	1517.81						
Measured Span Concentration, STP Dry Ga	1517.90						
Expanded measurement uncertainty as % o	of Applied Spa	an	2 %				

* Signal 3030 FID

Linx Printing Technologies Ltd Permit No : B04/94 Variation No : PPC10/08 Report Ref : P2208

: R001

Installation Name : Manufacturing Main Vent : Annual Compliance – 2014 : 4th November 2014 Visit Details Survey Dates Report Issue Date.

: 24th November 2014

TVOC Uncertainty of Measurement Results

Main Vent - TVOC - Uncertainty of Measurement Results - Calculations Part 1

Standard		Min Certified Range	
	Distribution	Divisor	TVOC
(% of Range)		Difficer	0 - 15
			mgC/m ³
$u_{1 of}$			0.73
U d.s			0.35
U loss			0.070
u _t	Rectangular	$\sqrt{3}$	0.30
(4)			4.39
24			1.80
	(% of Range) <i>u</i> lof <i>u</i> d,s <i>u</i> loss	Uncertainty (% of Range) Distribution u_{1of} $u_{d,s}$ u_{loss} u_{loss} u_t Rectangular u_i u_v	$\begin{array}{c c} \hline \textbf{Uncertainty}\\ \textbf{(\% of Range)} \end{array} Distribution \qquad Divisor\\ \hline \textbf{u}_{ \text{ d,s}} \\ \textbf{u}_{ \text{ loss}} \\ \textbf{u}_{ \text{ t}} \\ \textbf{u}_{ \text{ i}} \\ \textbf{u}_{ \text{ i}} \\ \textbf{u}_{ \text{ v}} \end{array} \textbf{Rectangular} \sqrt{3} \end{array}$

Notes:

For rectangula r distributi ons, $u(x_i) = \frac{u \times R_i}{\sqrt{3}}$

For $u(x_i) = \Delta x_i \sqrt{\frac{(x_{i,\text{max}} - x_{i,\text{add}})^2 + (x_{i,\text{min}} - x_{i,\text{add}})(x_{i,\text{max}} - x_{i,\text{add}}) + (x_{i,\text{min}} - x_{i,\text{add}})^2}{3}$, when $|(x_{i,\text{max}} - x_{i,\text{add}})| = |(x_{i,\text{min}} - x_{i,\text{add}})|$ then $u(x_i) = \frac{\Delta x_i}{\sqrt{3}}$. Where $u(x_i) = \frac{\sigma}{\sqrt{\pi}}$ (See note 6 below), $\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$

Performance Characteristics	Uncertainty (Units of final measurement)	Distribution	Divisor	TVOC 0 - 15 mgC/m ³
Lack of fit	U iof	Rectangular		0.064
Span drift	U d.s			0.031
Temperature dependant span drift	U+		√3	0.060
Interferents	u _i		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.38
Effect of Voltage Fluctuation (See Note)	U _v			0.16

Main Vent - TVOC - Uncertainty of Measurement Results - Calculations Part 2

Performance Characteristics	Uncertainty (Units of final measurement)	Date & Time	TVOC 0 - 15 mgC/m ³
Losses / leakage in the sample system	U loss	04/11/14 08:20 - 12:19	0.064
Standard Error of Measured Value	U SE	04/11/14 08:20 - 12:19	3.72

Effect on Uncertainty Caused by Oxygen

$$i\mathcal{LOP}_{O_2}^{h} = \frac{20\% - Q_{zef}}{(20\% - Q_{pactane})} \times \text{Uncertainty of } Q_2 \text{ Mass} = 1.00$$

$$f_{O_2} = \frac{20.9\% - Q_{2,ref}}{20.9\% - Q_{2,measured}} = 1.0000$$

$$i\mathcal{P}_{O_2} = \frac{i\mathcal{LCorr}^{h}_{O_2}}{f_{O_2}} \times 100 - 0.00 \text{ %}$$
The effect of oxygen on the overall uncertainties (below) is incorporated using the following equation:-

$$u_{content} = \sqrt{\sum (uf_{O_1})^2 + (Uncertainty of Measurement of Determinand)^2}$$

Where oxygen or moisture correction is required, uncertainty based on the standard error of the measured peripheral value is converted to units of final measurement using a sensitivity coefficient C,

 $\therefore u(x_i) = C_i u_i$ where $C_i = \frac{\partial f}{\partial x_i}$

Main Vent - TVOC - Uncertainty of Measurement Results - Calculations Part 3

		*TVOC
Uncertainty	Date & Time	0 - 15
		mgC/m ³
Measured Concentration	04/11/14 08:20 - 12:19	91.33
Expanded Uncertainty as Percentage of Measured Concentration	04/11/14 08:20 - 12:19	8%

Combined Standard Uncertainty $u_{c} = \sqrt{u_{lof}^{2} + u_{d,s}^{2} + u_{r}^{2} + u_{loss}^{2} + u_{t}^{2} + u_{i}^{2} + u_{r}^{2} + u_{r}^{2} + u_{sym}^{2}}$

Expanded uncertainty (at 95% confidence) $U_{Bay} = 2 \times u_c$

- Expressed as a percentage of the certified range Expressed as a percentage of the certified range as maximum drift per 24hr period Expressed as a percentage of the cortified span concentration Expressed as a percentage of the applied span concentration Expressed as a percentage of the certified range per one degree centigrade Where the uncertainty of moisture is taken from the manual extract test calculations. Expressed as a percentage of the certified range Where no uncertainty is presented above, the uncertainty is >100% 2 3 4 5 6
- 8

Linx Printing Technologies Ltd : B04/94 Permit No Variation No : PPC10/08 Report Ref : P2208

: R001

Installation Name : Manufacturing Main Vent : Annual Compliance – 2014 : 4th November 2014 Visit Details Survey Dates Report Issue Date.

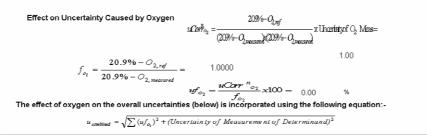
: 24th November 2014

Main Vent - TVOC - Uncertainty of Measurement Results - Calculations Part 1

	Standard	Standard		Min Certified Range
Performance Characteristics	Uncertainty	Distribution	Divisor	TVOC
	(% of Range)	Discussion	2111001	0 - 15
				mgC/m ³
Lack of fit ⁽¹⁾	$u_{1 \text{of}}$			0.73
Span drift ⁽²⁾	U d.s			0.35
Losses / leakage in the sample system ⁽⁴⁾	U loss			0.070
Temperature dependant span drift ⁽⁵⁾	u _t	Rectangular	$\sqrt{3}$	0.30
Interferents ⁽¹⁾	u _i			4.39
Effect of Voltage Fluctuation ⁽⁷⁾	24 v			1.80
Effect of Oxygen Synergism ⁽⁷⁾	H myn.			

Notes:

For rectangula r distributi ons, $u(x_i) = \frac{u \times R_i}{\sqrt{3}}$


For $u(x_i) = \Delta x_i$

For $u(x_i) = \Delta x_i \sqrt{\frac{v_{1,\text{max}}}{3}} + \frac{v_{1,\text{max}}}{\sqrt{n}} + \frac{v_{1,\text{max}}}{3} + \frac{v_{1,\text{max}}}{\sqrt{n}} + v_{1,\text{max$	یست ''یصر'' , when (x _{imi}	$ x_i - x_{i,adj} = (x_{i\min} - x_{i,adj}) $	and then $u(x_i) = \frac{i \omega_i}{\sqrt{3}}$	
Performance Characteristics	Uncertainty (Units of final measurement)	Distribution	Divisor	TVOC 0 - 15 mgC/m ³
Lack of fit	U lof			0.064
Span drift	U d.s	1		0.031
Temperature dependant span drift	U +	Rectangular	√3	0.060
Interferents	u _i		45	0.38
Effect of Voltage Fluctuation (See Note)	u,			0.16

 $\frac{\left[\left(x_{i,\text{max}} - x_{i,\text{adp}}\right)^2 + \left(x_{i,\text{min}} - x_{i,\text{adp}}\right)\left(x_{i,\text{max}} - x_{i,\text{adp}}\right) + \left(x_{i,\text{min}} - x_{i,\text{adp}}\right)^2}{3}, \text{ when } \left[\left(x_{i,\text{max}} - x_{i,\text{adp}}\right)\right] = \left[\left(x_{i,\text{min}} - x_{i,\text{adp}}\right)\right], \text{ then } u(x_i) = \frac{\Delta x_i}{\sqrt{3}}$

Main Vent - TVOC - Uncertainty of Measurement Results - Calculations Part 2

Performance Characteristics	Uncertainty (Units of final measurement)	Date & Time	TVOC 0 - 15 mgC/m ³
Losses / leakage in the sample system	U loss	04/11/14 12:20 - 16:19	0.089
Standard Error of Measured Value	U SE	04/11/14 12:20 - 16:19	8.69

Where oxygen or moisture correction is required, uncertainty based on the standard error of the measured peripheral value is converted to units of final measurement using a sensitivity coefficient C,

$\therefore u(x_i) = C_i u_i \text{ where } C_i = \frac{\partial f}{\partial c_i}$

Main Vent - TVOC - Uncertainty of Measurement Results - Calculations Part 3

		*TVOC
Uncertainty	Date & Time	0 - 15
		mgC/m ³
Measured Concentration	04/11/14 12:20 - 16:19	127.44
Expanded Uncertainty as Percentage of Measured Concentration	04/11/14 12:20 - 16:19	14 %

Combined Standard Uncertainty $u_{c} = \sqrt{u_{lof}^{2} + u_{d,s}^{2} + u_{r}^{2} + u_{loss}^{2} + u_{t}^{2} + u_{i}^{2} + u_{r}^{2} + u_{r}^{2} + u_{r}^{2} + u_{sym}^{2}}$

Expanded uncertainty (at 95% confidence) $U_{Exp} = 2 \times u_c$

Expressed as a percentage of the certified range

Expressed as a percentage of the certified range Expressed as a percentage of the certified range as maximum drift per 24hr period Expressed as a percentage of the certified range Expressed as a percentage of the certified range Where the uncertainty of moisture is taken from the manual extract test calculations. Expressed as a percentage of the certified range Where the uncertainty of moisture is taken from the manual extract test calculations. Expressed as a percentage of the certified range Where no uncertainty is presented above, the uncertainty is >100% 567

⁸

Linx Printing Technologies Ltd Permit No : B04/94 Variation No : PPC10/08 Report Ref : P2208

04/94 PC10/08 2208 : R001 Installation Name Visit Details Survey Dates Report Issue Date.

: Manufacturing Main Vent : Annual Compliance – 2014 : 4th November 2014 : 24th November 2014

Site: Linx Printing, St Ives Location: Production , Stack ID: Main Vent

```
u_{mass} = \sqrt{\sum (u_{filter})^2 + (u_{solution})^2}
```

			Recovered	LAB Method	Uncert (%) K=2	Standar	d Uncertainty	Combined
Determinand	Filter	Solution	Mass	Filter	Solution	Filter	Solution	Uncertainty
	mg	mg	mg	mg	mg	mg	mg	mg
			TP	M 1				
Particulates	0.38	1.10	1.48	0.14	0.27	0.0700	0.14	0.15
		TPM 1			Standard	Uncertaint	ty @ 95%	
Sample	ed Volume (V _m)	2.47		m ³	uVm	0.001	m ³	
Meter Correc	tion Factor (Yd)	0.98						
Meter Te	mperature (T _m)	295.03		k	uTm	1.5	k	
Static Pressure	of Stack P _{static}	0.30		mmH₂O	uP _{static}	0.25	mmH₂O	
Absolute St	ack Pressure ρ _s	738.06		mmHg	uρ _s	0.8	mmHg	
Barome	tric Pressure pb	738.24		mmHg	uρ _b	3.8	mmHg	
Average Differential Pre	ssure (ΔP) + ρs	98.59		mmH ₂ O	u∆H	0.25	mmH ₂ O	
Oxyge	n content (O _{2.m})	20.90		% by volume	$uO_{2,m} = \sigma / \sqrt{n}$	0.00	% by volume	
Moistur	e Content (H ₂ O)	0.0853		% by volume	uH ₂ O	0.07	% by volume	

Note: In the following calculations, the sensitivity coefficient (C) is estimated using: $C_i = \frac{\partial f}{\partial x_i}$

For each factor, uncertainty is then calculated by C_{iui} where C is the sensitivity coefficient, u is the standard uncertainty and i is the index identifying th contributing factor e.g. $i=uV_m$, uT_m etc.

Where results are required at wet conditions, the following correction factor is used to convert the data from the dry gas meter:

uncertainty co	correction facto	measured stati	to measured bar	tainty componer	e Uncertainty in v				factor uncertainty m)
	$f_s = \frac{273}{760} \times \frac{P_b}{m}$	$\frac{+\frac{\Delta H}{13.6}}{T_m} \times Y_d =$	0.892		V si	$d = V_{measured}$	$_d \times f_s =$	2.2013	
uдH	Maximum 0.46	Minimum 0.46	Sensitivity 0.0000457	ufstp 0.0000114		Maximum m ³	Minimum m ³	Sensitivity	Standard Uncertainty (m ³)
uρ _b	0.47	0.46	0.000621	0.00233	Effect of uV std	2.21	2.20	2.47	0.00587
uTm	0.46	0.46	0.000815	0.00122	Effect of uV _m	2.20	2.20	0.89	0.000892
H ₂ O	0.46	0.46	0.00463	0.000324					
$\frac{uf_s}{f_s} = \sqrt{\left(\frac{\sqrt{(u\Delta F)}}{(P_s)}\right)}$	$\left(\frac{H^{2}^{2} + (uP_{s})^{2}}{u_{m}^{2}/101.3}\right)^{2} + \left(\frac{H^{2}}{(u_{m}^{2}/101.3)}\right)^{2}$	$\frac{uT_m}{T_m/273.15}\bigg)^2 + \bigg(\frac{1}{1}$	$\frac{uH_2O}{00/(100-H_2O)}\right)^2 =$	0.00238	$\frac{uV_{std}}{V_{std}} = \gamma$	$\left(\frac{uV_{std}}{f_s}\right)^2 +$	$\overline{\left(\frac{uV_m}{V_m}\right)^2} =$	0.0145	

Uncertainty of correction factor to reference oxygen due to measured Uncertainty in final measurement @ reference conditions due to mass oxygen uncertainty component (uf_{o2}) & Uncertainty in final measurement uncertainty component (uM), oxygen correction uncertainty component @ reference conditions due to uncertainty component arrising from leak (uf_{0xy}) and STP volume uncertainty component (uVstp) and/or loss (assumed 2% max) in the sample system (uL)

$f_{o_2} = \frac{20.9\% - O_{2, ref}}{20.9\% - O_{2, measured}} = 1.00$		$Conc = \frac{1}{V_n}$	$\frac{M_{\text{Recovered}}}{M_{\text{Recovered}}} = $	0.67	
$uCorr^*_{s_2} = \frac{20.9\% - O_{2,nel}}{(20.9\% - O_{2,meanel}) \times (20.9\% - O_{2,meanel})} \times Uncertainty of O_2 Measurement = 1.00$	uМ	Maximum mg/Nm ³ 0.74	Minimum mg/Nm ³ 0.60	Sensitivity 0.45	u mg/Nm ³ 0.0691
$uf_{o_2} = \frac{uCorr^{n}_{o_2}}{f_{o_2}} x100 = 0.00$	uV _{stp}	0.68	0.67	0.31	0.00443

Measurement Uncertainty of Determinand (excluding correction for oxygen)

$u_{combined} = \sqrt{\sum (u_M)^2 + (u_L)^2 + (u_{stp})^2}$							
Combined	Expanded	Measured	Percent of				
Uncertainty	Uncertainty	Concentration	Measured				
mg/Nm ³	mg/Nm ³	mg/Nm ³	Concentration				
0.07	0.14	0.67	20.6%				

Measurement Uncertainty of Determinand (including correction for oxygen)

 $u_{combined} = \sqrt{\sum (uf_{o_c})^2 + (Uncertainty of Measurement of Determinand)^2}$

Determinand	Measurement Uncertainty of Determinand	Measurement Uncertainty of Oxygen Corr ⁿ Factor	Overall M easurement Uncertainty inc O ₂ Corr ⁿ factor (<i>Ucombined</i>)%	
Particulates	20.6	0.0	20.6	

Linx Printing Technologies Ltd : B04/94 Permit No Variation No : PPC10/08 Report Ref P2208

: R001

Installation Name Visit Details Survey Dates Report Issue Date.

: Manufacturing Main Vent : Annual Compliance – 2014 : 4th November 2014 : 24th November 2014

 $u_{mass} = \sqrt{\sum (u_{filter})^2 + (u_{solution})^2}$

Site: Linx Printing, St Ives Location: Production , Stack ID: Main Vent

```
LAB Method Uncert (%) K=2
Filter Solution
                                                                         Recovered
                                                                                                                                Standard Uncertainty
                                                                                                                                                                 Combined
         Determinand
                                                      Solution
                                                                            Mass
                                                                                                                                 Filter
                                                                                                                                               Solution
                                                                                                                                                                Uncertainty
                                      Filter
                                       mg
                                                         mg
                                                                             mg
                                                                                               mg
                                                                                                                 mg
                                                                                                                                  mg
                                                                                                                                                  mg
                                                                                                                                                                     mg
                                                                                     TPM 2
                                                                                                                                0.0700
Particulates
                                       3.50
                                                                             3.80
                                                                                              0.14
                                                         0.30
                                                                                                                 0.27
                                                                                                                                                 0.14
                                                                                                                                                                    0.15
                                                        TPM 2
                                                                                                                  Standard Uncertainty @ 95%
                                                                                         m<sup>3</sup>
                                                                                                                                           m<sup>3</sup>
                       Sampled Volume (Vm)
                                                         2.47
                                                                                                                       uVm
                                                                                                                                0.001
                Meter Correction Factor (Yd)
Meter Temperature (T<sub>m</sub>)
                                                       0.98
308.73
                                                                                         ..
k
                                                                                                                                   1.5
                                                                                                                       uTm
                                                                                                                                            k
               Static Pressure of Stack Pstatic
                                                        0.30
                                                                                         mmH₂O
                                                                                                                     uP<sub>static</sub>
                                                                                                                                 0.25
                                                                                                                                            mmH<sub>2</sub>O
                  Absolute Stack Pressure p.
                                                                                                                        uρs
                                                        738.06
                                                                                         mmHg
                                                                                                                                  0.8
                                                                                                                                           mmHg
                      Barometric Pressure pb
                                                        738.24
                                                                                         mmHg
                                                                                                                                  3.8
                                                                                                                                           mmHg
                                                                                                                        uρ<sub>b</sub>
   Average Differential Pressure (\Delta P) + \rho s
                                                        98 59
                                                                                         mmH<sub>2</sub>O
                                                                                                                       u∆H
                                                                                                                                 0.25
                                                                                                                                           mmH_2O
                       Oxygen content (O2,m)
                                                        20.90
                                                                                                          uO_{2m} = \sigma / \sqrt{n}
                                                                                                                                 0.00
                                                                                         % by volume
                                                                                                                                            % by volume
                       Moisture Content (H<sub>2</sub>O)
                                                        0.0891
                                                                                         % by volume
                                                                                                                                  0.07
                                                                                                                                            % by volume
                                                                                                                      uH<sub>2</sub>O
```

 $C_i = \frac{\partial f}{\partial f}$ Note: In the following calculations, the sensitivity coefficient (C) is estimated using: $\overline{\partial x_i}$

For each factor, uncertainty is then calculated by Ciui where C is the sensitivity coefficient, u is the standard uncertainty and i is the index identifying th contributing factor e.g. $i = uV_m$, uT_m etc.

Where results are required at wet conditions, the following correction factor is used to convert the data from the dry gas meter:

uncertainty co	correction facto	measured stati		ainty componer					factor uncertainty m)
,	$f_s = \frac{273}{760} \times \frac{P_b}{100}$	A 11		(V _{si}	$_{d} = V_{measured}$	$d \times f_s =$	2.1062	
u∆H	Maximum 0.45	Minimum 0.45	Sensitivity 0.0000446	ufstp 0.0000111		Maximum m ³	Minimum m ³	Sensitivity	Standard Uncertainty (m³)
uρ _b	0.45	0.45	0.000607	0.00227	Effect of uV <i>std</i>	2.11	2.10	2.47	0.00543
uTm	0.45	0.45	0.000777	0.00117	Effect of uV _m	2.11	2.11	0.85	0.000852
H ₂ O	0.45	0.45	0.00453	0.000330					
$\frac{uf_s}{f_s} = \sqrt{\left(\frac{\sqrt{(u\Delta H)}}{(P_s)}\right)^2}$	$\left(\frac{I)^2 + (uP_s)^2}{u/101.3}\right)^2 + \left(\frac{I}{(I)^2}\right)^2$	$\frac{uT_m}{T_m/273.15}\right)^2 + \left(\frac{1}{1}\right)^2$	$\frac{uH_2O}{00/(100-H_2O)}\right)^2 =$	0.00219	$\frac{uV_{std}}{V_{std}} = 1$	$\left(\frac{uV_{std}}{f_s}\right)^2 +$	$\overline{\left(\frac{uV_m}{V_m}\right)^2} =$	0.0134	

Uncertainty of correction factor to reference oxygen due to measured Uncertainty in final measurement @ reference conditions due to mass oxygen uncertainty component (uf₀₂) & Uncertainty in final measurement uncertainty component (uM), oxygen correction uncertainty component @ reference conditions due to uncertainty component arrising from leak (uf_{0xy}) and STP volume uncertainty component (uVstp) and/or loss (assumed 2% max) in the sample system (uL)

$f_{o_2} = \frac{20.9\% - O_{2, ref}}{20.9\% - O_{2, measured}} = 1.00$	$Conc = \frac{M_{\text{Recovered}}}{V_m \times f_s \times f_{o_2}} = 1.80$				
$uCorr_{s_{2}}^{*} = \frac{20.9\% - O_{2, net}}{(20.9\% - O_{2, netword}) \times (20.9\% - O_{2, netword})} \times Uncertainty of O_{2} Measurement = 1.00$	uМ	Maximum mg/Nm ³ 1.88	Minimum mg/Nm ³ 1.73	Sensitivity	u mg/Nm ³ 0.0722
$uf_{o_2} = \frac{uCorr^{n}_{o_2}}{f_{o_2}} x100 = 0.00$	uV _{stp}	1.82	1.79	0.86	0.0115

Measurement Uncertainty of Determinand (excluding correction for oxygen)

$u_{combined} = \sqrt{\sum (u_M)^2 + (u_L)^2 + (u_{stp})^2}$						
Combined	Expanded	Measured	Percent of			
Uncertainty	Uncertainty	Concentration	Measured			
mg/Nm ³	mg/Nm ³	mg/Nm ³	Concentration			
0.07	0.15	1.80	8.1%			

Measurement Uncertainty of Determinand (including correction for oxygen)

 $u_{combined} = \sqrt{\sum (uf_{o_2})^2 + (Uncertainty of Measurement of Determinand)^2}$

Determinand	Measurement Uncertainty of Determinand	Measurement Uncertainty of Oxygen Corr ⁿ Factor	Overall M easurement Uncertainty inc O ₂ Corr [®] factor (<i>Ucombined</i>)%	
Particulates	8.1	0.0	8.1	