EMISSIONS MONITORING SURVEY

Prepared for:

Linx Printing Technologies Ltd.

Burrell Road

St Ives

Huntingdon

Cambridgeshire

PE27 3LA

Permit Number	: PG6/44(04)
Variation Number	: 2004
Installation	: Manufacturing Main Vent
Visit Details	: Annual Compliance – 2013
Job Number	: P1869
Report Number	: R001
Report Issue Date	: 15 th November 2013
Survey Dates	: 5 th November 2013

Prepared by:

Environmental Compliance Limited

Unit G1 Main Avenue Treforest Industrial Estate Pontypridd CF37 5BF.

Tel: 01443 841760 Fax: 01443 841761

R	eport Issue:	FINAL			
Repo	ort Prepared by:	Report Reviewed & Approved by MCERTS Level Two Technical Endorsements TE1, TE2, TE3 & TE4			
	Jon Litterick	Name:	Andy Barnes		
Name:	con Emonor	MCERTS No:	MM 03 235		
		Signature:	52e		
Date:	14/11/13	Date:	15/11/13		

This report is not to be used for contractual or engineering purposes unless this approval sheet is signed where indicated by the approver and the report is designated "FINAL".

Linx Printing Technologies Ltd

Permit No : PG6/44(04)

Variation No : 2004

Report Ref : P1869 : R001

Installation Name : Manufacturing Main Vent : Annual Compliance – 2013

Survey Dates : 5th November 2013

Report Issue Date. : 15th November 2013

This report has been prepared by Environmental Compliance Limited (ECL) in their professional capacity as Environmental Consultants. The contents of the report reflect the conditions that prevailed and the information available or supplied at the time of its preparation. The report, and the information contained therein, is provided by ECL solely for use and reliance by the Client in performance of ECLs duties and liabilities under its contract with the Client. Until ECL has received payment in full as detailed in the quotation or contract the contents of this report remain the legal property of ECL. The contents of the report do not, in any way, purport to include any manner of legal advice or opinion.

Should the Client wish to release this report to a Third Party for the party's reliance, Environmental Compliance Ltd may, at its discretion, agree to such release provided that:

- Environmental Compliance Ltd gives written agreement prior to such release and ECL has received payment in full for all works/services undertaken;
- By release of the report to the Third Party, that Third Party does not acquire any rights, contractual or otherwise, whatsoever against Environmental Compliance Ltd and, accordingly, Environmental Compliance Ltd assume no duties, liabilities or obligations to that Third Party;
- Environmental Compliance Ltd accepts no responsibility for any loss or damage incurred by the Client or for any conflict of Environmental Compliance Ltd interests arising out of the Clients' release of this report to the Third Party.

In the event that a report is revised and re-issued, the client shall ensure that any earlier versions of the report, and any copies thereof, are void and such copies should be marked with the words "superseded and revised".

Opinions and Interpretation expressed within this report are outside the scope of the UKAS accreditation.

MCERTS requirements mean that comparison of results with emissions limit values is not permitted within this report.

Linx Printing Technologies Ltd
Permit No : PG6/44(04)
Variation No : 2004
Report Ref : P1869

: R001

Installation Name Visit Details Survey Dates Report Issue Date.

: Manufacturing Main Vent : Annual Compliance – 2013 : 5th November 2013 : 15th November 2013

TABLE OF CONTENTS

Number	Section	Description	Page Number
--------	---------	-------------	----------------

	Document Control Sheet	
PART 1	EXECUTIVE SUMMARY	4
1	MONITORING OBJECTIVES	4
1.1	Monitoring Results	5
1.2	Operating Information	6
2	MONITORING DEVIATIONS	7
PART 2	SUPPORTING INFORMATION	8
3	SAMPLING STAFF DETAILS	8
4	SAMPLING PROTOCOLS / METHODOLOGIES	9
5	SAMPLE POINT DESCRIPTIONS	11
	EQUIPMENT IDs	12
	FIGURES	14
	TABLES	16
	VELOCITY TRAVERSE PROFILES	20
	FIELD CALIBRATION AND SAMPLING DATA	22
	LABORATORY ANALYSIS RESULTS	27
	UNCERTAINTY CALCULATIONS	30
]

Linx Printing Technologies Ltd : PG6/44(04) Permit No Variation No : 2004 Report Ref

: P1869 : R001

Installation Name Visit Details Survey Dates Report Issue Date. : Manufacturing Main Vent : Annual Compliance - 2013 : 5th November 2013 : 15th November 2013

PART 1 - EXECUTIVE SUMMARY

Monitoring Objectives 1

Environmental Compliance Ltd (ECL) was commissioned by Linx Printing **Technologies Ltd** to undertake an emission monitoring survey at their **Ink** Manufacturing site in St Ives. This report presents the findings of the study.

The monitoring at this installation was carried out in accordance with our quotation reference PC/P1869/Q001, for compliance check monitoring of emissions to air. The substances requested for monitoring at each emissions point are listed below:

Substances to be monitored	Emission Point Identification
	Ink Manufacture – Main Vent
Particulates	• U
Total Organic Carbon (TVOC)	• U

- Denotes the substances to be monitored.
- U Denotes UKAS accreditation is held for monitoring that substance, but does not mean that it has been claimed which will depend on whether the testing could be completed in accordance with the Standard Reference Method.

Special Requirements: "Test TVOC for full 8 hours"

Linx Printing Technologies Ltd Permit No : PG6/44(04)

Variation No : 2004 Report Ref : P1869 : R001 Installation Name Visit Details Survey Dates Report Issue Date. : Manufacturing Main Vent : Annual Compliance – 2013 : 5th November 2013 : 15th November 2013

1.1 Monitoring Results

Emission Point Reference	Substance to be Monitored	Emission Limit Value	Periodic Monitoring Result	Units	Uncertainty %	Reference Conditions 273 K, 101.3 kPa	Date of Sampling	Start and End Times	Monitoring Method Reference	Accreditation for use of Method	Tick if non- conforming test (see Sections 2 & 5)	Operating Status
Ink	Particulates \$	20	0.64	mg/m³	27	& Wet Gas	05/11/13	08:05 - 10:05	BS EN 13284-1	UKAS / MCERTS	>	
Manufacture –	Particulates \$	20	0.20	mg/m³	100	& Wet Gas	05/11/13	10:30 – 12:30	BS EN 13284-1	UKAS / MCERTS	✓	Normal
Main Vent	TVOC as Carbon	150	84.24	mg/m³	2	& Wet Gas	05/11/13	08:02 - 16:02	BS EN 12619:2013	UKAS / MCERTS		

Notes

The uncertainty figure presented in Table 1.1 for TVOC is the "measurement uncertainty" figure, which does not take into account the variability of the measured sample values. The "uncertainty of measurement results" figure, which does include this contribution, is also presented in the appendices of the report.

Notes

Emission Limit Value
Periodic Monitoring Result
Uncertainty
Reference Conditions
Monitoring Method Reference
Accreditation for use of Method
Operating Status

NU NA The emission limit value is that stated in the permit and will be expressed as a concentration or a mass emission.

The result given is expressed in the same terms and units as the emission limit value.

The uncertainty associated with the quoted result is at the 95% confidence interval. The Uncertainty results **DO NOT** take into account the effect of the sample location limitations.

All results are expressed at 273 K and 101.3kPa. The oxygen and moisture corrections are stated.

The method stated is in accordance with the Environment Agency Technical Guidance Note M2, or other method approved by the Environment Agency.

The details indicate the accreditation for the use of the complete monitoring method, e.g. MCERTs, UKAS. If use of the method is not accredited "NA" is stated.

The details indicate the feedstock and the loading rate of the plant during monitoring.

Chemical Analysis on sample reagents was performed by an External Laboratory as detailed in Section 4

UKAS Accreditation Held but UKAS Accreditation cannot be claimed for the test as sampling did not comply with the Standard Reference Method (SRM), see section 2 & 5

Method is NOT UKAS Accredited.

Linx Printing Technologies Ltd Permit No : PG6/44(04)

Variation No : 2004
Report Ref : P1869

Installation Name Visit Details : Manufacturing Main Vent : Annual Compliance – 2013 : 5th November 2013

Survey Dates Report Issue Date.

. : 15th November 2013

1.2 Operating Information

: R001

Emission Point							Comp	arison of Op	erator CEMS	and Periodic Mo	onitoring Resul	ts
Reference	Process Type	Process Duration	Fuel	Feedstock	Abatement	Load	Parameter	Date	Time	CEMS Results	Periodic Monitoring Results	Units
Main Vent	Batch	08:00 - 16:30	n/a	n/a	None	Normal				n/a		

Notes:

Process Type State whether the process is a continuous or batch process.

Process Duration If a batch process, state the duration, frequency and details of the portion of the batch sampled. If continuous state "NA"

Fuel If applicable, state the fuel type If not applicable state "NA"

Feedstock State the feedstock type

Abatement State the type and whether operational during monitoring. If not applicable state "NA"

Load State the normal load, throughput or rating of the plant

CEMS Data Enter this data for each CEM installed if it is has been provided by operator otherwise state "NP" (NOT PROVIDED)

Linx Printing Technologies Ltd Permit No : PG6/44(04) Variation No : 2004 Report Ref

: P1869 : R001

Installation Name Visit Details **Survey Dates** Report Issue Date. : Manufacturing Main Vent : Annual Compliance - 2013 : 5th November 2013 : 15th November 2013

2 **Monitoring Deviations**

The objective of the survey was to measure the concentrations of pollutants from the processes / locations as detailed in Section 1. This survey meets the requirements of the site's PPC Permit Number: PG6/44(04) where UKAS and MCERTS accreditation has and could be claimed for the testing in the monitoring results table.

There were no modifications to the sampling procedures (TPDs) listed in section 4.

There were no substance deviations from the original and agreed emissions monitoring schedule.

Non-conforming tests are as follows:-

Particulate samples were made from centre point only, whereas BS EN 13284 stipulates 5 sample points for a duct with this diameter (500mm). This deviation was made for safety reasons, as there are no internally threaded sample ports available so securing the probe at all the sample points was not possible. This non-conformity does not alter the accreditation status of the tests.

The Uncertainty of the reported concentrations for these pollutant results DOES NOT take into account the effect of these nonconformities or sample location limitations.

Homogeneity tests have/ have not been completed and are not applicable to this location as the duct area is $<1m^2$.

Linx Printing Technologies Ltd Permit No : PG6/44(04) : 2004 : P1869 Variation No Report Ref

: R001

Installation Name **Visit Details** Survey Dates Report Issue Date. : Manufacturing Main Vent : Annual Compliance – 2013 : 5th November 2013 : 15th November 2013

PART 2 – SUPPORTING INFORMATION

3 SAMPLING STAFF DETAILS

Site Sampling Team

Names of Site Team	Dates on Site	MCERTS No.	LEVEL	Technical Endorsements	
Andy Barnes	05/11/13	MM 03 235	2	TE1, TE2, TE3, TE4	

Report Reviewer

Name	MCERTS No.	LEVEL	Technical Endorsements		
Andy Barnes	MM 03 235	2	TE1, TE2, TE3, TE4		

Technical Endorsement Key:-

TE1 – **Isokinetic** Particulates, Temperature & Velocity Profiles, Oxygen.

TE2 - Isokinetic Extractive Pollutants:- Metals, Dioxin & Furans, PAHs, PCBs, HCI, HF.

TE3 – **Non-Isokinetic** Extractive Pollutants:- Speciated VOCs, HF, HCl, Cyanide.

TE4 – Continuous Analysers (Combustion Gases):- TVOC, CO, NOx, SO2.

Linx Printing Technologies Ltd Permit No : PG6/44(04) Variation No : 2004 Report Ref : P1869 Installation Name Visit Details Survey Dates Report Issue Date. : Manufacturing Main Vent : Annual Compliance – 2013 : 5th November 2013 : 15th November 2013

4 SAMPLING PROTOCOLS / METHODOLOGIES

Any required modifications to the Technical Procedure Documents (TPDs) specified below will be detailed in section 2 of this report.

TVOC as Carbon

: R001

Testing was carried out using an MCERTS Certified Signal 3030PM FID and heated gas sample line, with reference to the manufacturer's operation handbook, **BS EN 12619:2013** and in-house technical procedure **ECL/TPD/032**.

The analyser was calibrated on site using certified propane span gases, (made up in synthetic air) which are traceable to ISO 17025 standard. (with uncertainty <2%).

Zero measurements were performed using synthetic air zero gas, with TVOC content less than 0.2 mg/m^3 (or purity greater than 99.998%).

The analyser was calibrated directly into the sample inlet and then checked through the entire sampling system (including sampling probe, heated filter and heated gas transport lines). Data was corrected by molecular weight to TVOCs as total carbon.

Data was recorded as minute averages over each test period. The data is presented in the Figures Section and the minute averaged data is detailed in the Tables Section.

Pressure, Temperature and Velocity

Testing was carried out using a sampling system in accordance with **BS EN 13284-1 & MID** and In-house technical procedure **ECL/TPD/022**.

Temperature was recorded using a thermocouple and digital temperature reader.

Velocity and pressure were recorded using an "L" type pitot and digital manometer, data being recorded in Pascals.

Linx Printing Technologies Ltd Permit No : PG6/44(04) Variation No : 2004 Report Ref

: P1869 : R001

Installation Name Visit Details **Survey Dates** Report Issue Date.

: Manufacturing Main Vent : Annual Compliance - 2013 : 5th November 2013 : 15th November 2013

Particulates

Testing was carried out using a Manual Stack Sampling system in accordance with BS EN 13284-1 & MID and In-house technical procedure ECL/TPD/027A

Isokinetic particulate sampling is achieved when the velocity of gas entering the sampling nozzle is exactly equal to the velocity of the approaching gas stream within the stack.

A measured volume of sample gas is withdrawn from the stack isokinetically through a sampling nozzle and through 37mm pre-weighed and pre-blown GFA filter positioned in an unheated housing inserted into the stack.

Particulate matter is collected on the filter. Following testing the front half of the filter housing, probe (out-stack sampling only) and the sample nozzle are rinsed to remove any particulate matter which, may have impacted on the surfaces during testing. The dry residue of the Acetone used for rinses is <5mg/l. The filters and rinses are subsequently analysed to determine the amount of particulate matter captured.

The standard pre-sample conditioning temperature of the filters is 180°C and the standard post-sample conditioning temperature is 160°C. (Any modifications to this are noted in section 2 of this report). Apparent weights are corrected, if required, based on the weights of three control filters and evaporating basins which are weighed (pre and post sampling) with each batch of filters & rinses.

Scientific Analysis Laboratories Ltd (SAL) who are situated in Manchester carried out the analysis of the samples. SAL are UKAS accredited for this analysis. In addition to the survey samples, appropriate field blanks are submitted as part of the technical procedure.

Linx Printing Technologies Ltd Permit No : PG6/44(04) Variation No : 2004 Report Ref : P1869

 Ltd 4(04)
 Installation Name Visit Details Survey Dates

 : R001
 Report Issue Date.

: Manufacturing Main Vent : Annual Compliance – 2013 : 5th November 2013 : 15th November 2013

5 SAMPLE POINT DESCRIPTIONS

The homogeneity test is applicable to combustion processes. This includes but is not restricted to, those regulated under the Waste Incineration Directive (**WID**) and the Large Combustion Plant Directive (**LCPD**).

Homogeneity testing has not been completed at this location. The test is not usually required for stacks with sampling plane areas of <1m² (below 1.13m in diameter for circular ducts).

The sample location that was monitored is detailed below:-

Ink Manufacture – Main Vent

The sampling plane is in long straight vertical section of the emissions stack.

The diameter at the sample plane is 0.5m.

The flow characteristics meet the *requirements* of the standard.

2 x 2" ports are available and are located as per the requirements of BS EN 13284.

The equipment is set up at ground level, with probes raised to the sample plane (<5m) via temporary access.

Samples for Particulates are non-conforming tests, due to the fact that not all the designated sample points on the sample plane could be used. Whilst it was possible to safely reach both ports for the purposes of the pitot traverse, there was no safe way to support the probe in Port B for particulate sampling, and in port A, the probe was fixed at a single (centre) point in the duct. This non-conformity does not alter the accreditation status of the tests.

The Uncertainty of the reported concentrations for these pollutant results DOES NOT take into account the effect of these non-conformities or sample location limitations.

Linx Printing Technologies Ltd
Permit No : PG6/44(04) : Visit Details
Variation No : 2004
Report Ref : P1869 : R001

Installation Name : Manufacturing Main Vent : Annual Compliance – 2013
Survey Dates : 5th November 2013
: 15th November 2013

EQUIPMENT IDs (Pre site checklist from SSP)

Linx Printing Technologies Ltd Permit No : PG6/44(04) Variation No : 2004 Report Ref : P1869

: R001

Installation Name Visit Details Survey Dates Report Issue Date. : Manufacturing Main Vent : Annual Compliance – 2013 : 5th November 2013 : 15th November 2013

PRE SITE EQUIPMENT CHECKLIST/ EQUIPMENT USED

(Completed before depa									
Equipment	Equip. Type	ID No:							
MST console/pump									
MST Nozzle set									
MST "S" Type Pitot									
MST Probe									
MST Hot Box									
MST Impinger Arm	E001								
Barometer		629							
Site Balance									
Site Check weights									
Horiba									
Heated Probe / Filter									
Chiller	E002								
Sonimix									
Heated Line									
FID	E003	304							
Heated Line		354	355						
Heated Probe / Filter		806							
Testo	E004								
FTIR									
Heated Probe / Filter	E005								
Heated Line									
Stackmite		366							
"L" Type Pitot		487							
Digital Manometer		506							
Stack Thermocouple	E006	464							
Thermocouple Reader		414							
Nozzle Set		801							
		001							
Workhorse Pumps	E007								
Low Flow Pumps									

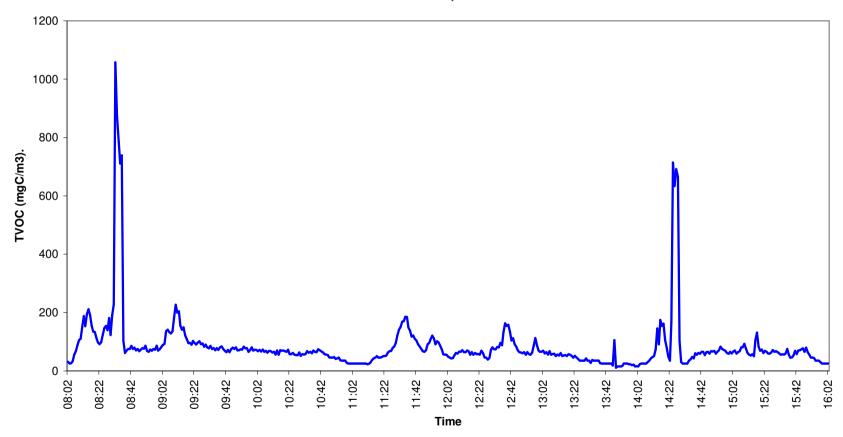
Quantity of Ice Required / Used for Survey | ZERO Bags (2kg bags)

Linx Printing Technologies Ltd
Permit No : PG6/44(04) : Visit Details
Variation No : 2004
Report Ref : P1869 : R001

Installation Name : Manufacturing Main Vent : Annual Compliance – 2013
Survey Dates : 5th November 2013
: 15th November 2013

FIGURES

Linx Printing Technologies Ltd Permit No : PG6/44(04) Variation No : 2004


Report Ref

: 2004 : P1869 : R001 Installation Name Visit Details Survey Dates Report Issue Date. : Manufacturing Main Vent : Annual Compliance – 2013 : 5th November 2013 : 15th November 2013

Figure 1

TVOC Data Recorded From Linx Printing, Main Vent - Manufacturing, on 05/11/2013, Between 08:02 and 16:02.

Reference Conditions 273K, 101.3kPa & Wet Gas.

Linx Printing Technologies Ltd
Permit No : PG6/44(04) : Visit Details
Variation No : 2004
Report Ref : P1869 : R001

Installation Name : Manufacturing Main Vent : Annual Compliance – 2013
Survey Dates : 5th November 2013
: 15th November 2013

TABLES

Linx Printing Technologies Ltd
Permit No : PG6/44(04)

Variation No : 2004
Report Ref : P1869 : R001

Installation Name : Manufacturing Main Vent : Annual Compliance – 2013

Survey Dates : 5th November 2013
: 15th November 2013

Table 1

TOC Data Recorded from Manufacturing - Main Vent Sample Period: 08:02 – 16:02 on the 5th November 2013

Volumetric Flowrate (Reference Conditions) =

0.84 m³/sec *

	Average	Emission Rate
	mg/m³	Kg/hr
TVOCs (as carbon)*	84.24	0.255

^{*} Reference Conditions (273K, 101.3 kPa & Wet Gas)

Linx Printing Technologies Ltd Permit No : PG6/44(04) Variation No : 2004 Report Ref : P1869

: R001

Installation Name
Visit Details
Survey Dates
Report Issue Date.

Installation Name
: Manufacturing Main Vent
: Annual Compliance – 2013
: 5th November 2013
: 15th November 2013

Table 2 – Particulates Data Recorded from Manufacturing - Main Vent

Emission Parameter	Units	TPM 1	Blank
Stack Diameter	metres	0.50	
Area of Sample Plane	m²	0.196	
Moisture Content	%	0.10	
Oxygen Content	%	20.90	
Stack Temperature	°C	19	
Gas Velocity (at Stack Conditions)	m/sec	4.70	
Gas Velocity (Reference Conditions)	m/sec*	4.29	
Volumetric Flowrate (Stack Conditions)	m³/sec	0.92	
Volumetric Flowrate (Peference Conditions)	m³/sec*	0.84	
Sample Date		05/11/2013	
Sample Period		08:05 - 10:05	
Sample Volume (at Stack)	m³	1.91	
Sample Volume (reference Conditions)	m³*	1.74	1.74
Isokinetic Sampling Rate	%	108.4	•••
Sample Reference (ECL ID)	ECL/13/	5478 & 5479	5482 & 5483
Mass of Particulate Matter Collected	mg	1.12	0.35
Concentration of Particulate Matter	mg/m³*	0.64	0.20
Emission Rate of Particulate Matter	g/hr	1.95	
Expanded Uncertainty (%Relative)	%	27	
Emission Limit Value (ELV)	mg/m³*	20	
Blank Concentration as Percentage of ELV	%		1.00

^{*}Reference Conditions (273K, 101.3kPa, Wet Gas)

Linx Printing Technologies Ltd Permit No : PG6/44(04) Variation No : 2004 Report Ref : P1869

: R001

Installation Name
Visit Details
Survey Dates
Report Issue Date.

Installation Name
: Manufacturing Main Vent
: Annual Compliance – 2013
: 5th November 2013
: 15th November 2013

Table 3 - Particulates Data Recorded from Manufacturing - Main Vent

Emission Parameter	Units	TPM 2	Blank
Stack Diameter	metres	0.50	
Area of Sample Plane	m²	0.196	
Moisture Content	%	0.11	
Oxygen Content	%	20.90	
Stack Temperature	°C	19	
Gas Velocity (at Stack Conditions)	m/sec	4.70	
Gas Velocity (Reference Conditions)	m/sec*	4.29	
Volumetric Flowrate (Stack Conditions)	m³/sec	0.92	
Volumetric Flowrate (Peference Conditions)	m³/sec*	0.84	
Sample Date		05/11/2013	
Sample Period	•••	10:30 - 12:30	
Sample Volume (at Stack)	m ³	1.92	
Sample Volume (reference Conditions)	m³*	1.75	1.75
Isokinetic Sampling Rate	%	108.9	
Sample Reference (ECL ID)	ECL/13/	5480 & 5481	5482 & 5483
Mass of Particulate Matter Collected	mg	0.35	0.35
Concentration of Particulate Matter	mg/m³*	0.20	0.20
Emission Rate of Particulate Matter	g/hr	0.61	
Expanded Uncertainty (%Relative)	%	>100%	
Emission Limit Value (ELV)	mg/m³*	20	
Blank Concentration as Percentage of ELV	%		<1.00%

^{*}Reference Conditions (273K, 101.3kPa, Wet Gas)

VELOCITY TRAVERSE PROFILES

Linx Printing Technologies Ltd Permit No : PG6/44(04)

Installation Name Visit Details : Manufacturing Main Vent : Annual Compliance – 2013

Variation No : 2004 Report Ref : P1869

: R001 Report Issue Dat

Survey Dates : 5th November 2013 Report Issue Date. : 15th November 2013

vironmental Compliance Limited	Traverse Data Profoma		Date of N	leasurement	
Linx Printing	Stack Diameter (mm)	500	Pitot tube coeff	icient	1.00
St Ives	Port Length (mm)		Pitot ID		487
Manufacturing	Duct Length (mm) A		Stack Thermoco	ouple ID	464
Main Vent	Duct width (mm) B		Stack Thermoco	ouple Reader ID	414
P1869	Barometric Pressure. (mb)	989	Manometer ID		506
AB	Static Pressure. (mm H ₂ 0) (= Pa/9.81)	0.5	Barometer ID		629
	Linx Printing St Ives Manufacturing Main Vent P1869	Linx Printing Stack Diameter (mm) St Ives Port Length (mm) Manufacturing Duct Length (mm) A Main Vent Duct width (mm) B P1869 Barometric Pressure. (mb)	Linx Printing Stack Diameter (mm) 500	Linx Printing Stack Diameter (mm) 500 Pitot tube coeff St Ives Port Length (mm) Pitot ID Manufacturing Duct Length (mm) A Stack Thermood Main Vent Duct width (mm) B Stack Thermood P1869 Barometric Pressure. (mb) 989 Manometer ID	Linx Printing Stack Diameter (mm) 500 Pitot tube coefficient St Ives Port Length (mm) Pitot ID Manufacturing Duct Length (mm) A Stack Thermocouple ID Main Vent Duct width (mm) B Stack Thermocouple Reader ID P1869 Barometric Pressure. (mb) 989 Manometer ID

	Distance to	Port	Temp.	(<u>A</u> P)	Swirl Test	Port	Temp.	(<u>A</u> P)	Swirl Test
	Point (mm)	Port	(°C)	(Pa)	O From Reference	Port	(°C)	(Pa)	O From Reference
	55	A1	19.0	7.0	10	B1	19.0	22.0	5
	250	A2	19.0	13.0	6				
	445	A3	19.0	20.0	5	B3	19.0	9.0	10
Tatal			57				38		
Total				20.0				22.0	
Max			19 19	20.0 7.0			19 19	22.0	
Min								9.0	
Average			19.0	13.3			19.00	15.50	

Average temp (K)	292

Suitability of Sampling Position	Actual Stack Conditons
Permitted highest:lowest flow pressure ratio =9:1	3.14:1
Average deviation of flow from axis <15 ⁰	ОК
X-sectional area for stacks= πr^2	0.20 m ²
X-sectional area for ducts = L x B	0.000 m ²
Suitabilty of Position for Sampling	OK

Stack Moisture	0.1	%
Measured Oxygen	20.9	%
Measured Carbon Dioxide	0.0	%
Dry Gas Molecular Weight	28.836	g/g mole

Gas Velocity (as Measured)	4.81	m/sec
Gas Velocity (Reference Conditions)	4.39	m/sec*
Volumetric Flowrate (as Measured)	0.9435	m³/sec
Volumetric Flowrate (Reference Conditions)	0.8612	m³/sec*

^{05/11/2013} Diagram/ Description of Cross Section of Stack/Duct 500mm Access is via temporary platform Plane is <5m above ground All kit stays on ground, plenty of space. Only probes raised via temporary access and tied to stack brace Deviations from procedure/ non - conformities Two ports are fitted, but not threaded. It is possible to pitot traverse both ports safely, but for particulate sampling, for safety, the probe is tied in a single fixed position. Compliance With Positional Requirements? Height of sample ports from Platform 1.0m Number of sample ports Width of platform (port back to handrail) 1.5m Nearest downstream disturbance Exit 4m Nearest upstream disturbance 2m

Disturbances are classed as bends, fans or diameter variations

^{*}Reference Conditions: 273K, 101.3kPa, Wet Gas

Linx Printing Technologies Ltd
Permit No : PG6/44(04)
Variation No : 2004
Report Ref : P1869 : R001

Installation Name : Manufacturing Main Vent : Annual Compliance – 2013
Survey Dates : 5th November 2013
: 15th November 2013

FIELD CALIBRATION AND SAMPLING DATA

Linx Printing Technologies Ltd
Permit No : PG6/44(04)
Variation No : 2004
Report Ref : P1869

: Manufacturing Main Vent : Annual Compliance – 2013 : 5th November 2013 : 15th November 2013 Installation Name Visit Details Survey Dates Report Issue Date. : R001

TVOC-			

Client	Linx	Ва	
Site	St Ives		
Date	05/11/2013		
Location	Manufacturing		
Stack ID	Main Vent		
Stack Temp ℃	19		
Ambient Temp	During Pre-test Calibration 12		
Ambient Temp (sampling)	1= 12		
Job No	P1869		
Operators	AB		

Barometric Pressure mb	989		
Barometer ID	ECL/ID/ 629		
Analyser ID	ECL/ID/ 304		
Sonimix/ MFC ID	ECL/ID/ n/a		
Heated Line/ Controller ID	ECL/ID/ 354 & 355		
Heated Line Set Temp ℃	180		
Heated Line Length	10	m	
Heated Filter ID	ECL/ID/ 806		
Heated Filter Set Temp ℃	180		
Logger ID	217		

Calibration Gas Details

Calibration Gas	Gas Bottle ID	Gas Value	Uncertainty of Gas (k=2)
Zero Gas (Synthetic Air)	Gas/ 1220		
Hydrogen / Helium	Gas/ 1199		
Propane (In Air)	Gas/ 1176	907.2 ppm	9.07 ppm

Analyser Range	Span Gas value used
1000 ppm	907.2 ppm
	Range

Analyser Range should be not less than the expected peak emissions.

Span Gas Values should be either approximately the half-hourly ELV OR 50% to 90% of the Selected Analyser Range.

	Direct Calibration (Rear of Analyser)							
	Zero	Cal	Span (Gas Cal	Zero Check			
	Start Time	End Time	Start Time	End Time	Start Time	End Time		
ZERO /SPAN/ ZERO	07:28	07:33	07:34	07:39	07:40	07:45		

NOTE: RESPONSE TIME

Response Time to be carried out at the same time as "Span Check" on system verification (via the sample probe) Start Time = when gas turned on. 90%Time = when analyser displays 90% of span gas value used. Response must be within 200 seconds.

	PRE System Verification Check (Down Line)							
	Zero	<u>Check</u>	Span <u>Check</u>					
	Start Time	End Time	Start Time	End Time				
ZERO / SPAN	07:46	07:51	07:53	07:58				

Response Time <u>SYSTEM</u> Span Gas Cal								
Start Time	90% Time	less than 200s (Y/N)						
07:52	07:53	Υ						

	Start Time	End Time	Location		Production Details
Sample Period	08:00	16:03	Main Vent	П	Varied - Normal
Sample Period					
Sample Period					
Sample Period					
Sample Period					
Sample Period					

	POST System Verification Check (Down Lin							
	Zero	<u>Check</u>	Span Check					
	Start Time	End Time	Start Time	End Time				
ZERO / SPAN	16:05	16:10	16:10	16:16				

Linx Printing Technologies Ltd Permit No : PG6/44(04) Variation No : 2004 Report Ref : P1869

: R001

Installation Name Visit Details Survey Dates Report Issue Date.

: Manufacturing Main Vent : Annual Compliance – 2013 : 5th November 2013 : 15th November 2013

		TVOC
Analyse	er Range	1000
Repeatab	ility at Zero	2
Span Gas Conc	entration Applied	907.2
Zero Gas Conce	entration Applied	0
	Zero	0.00
Direct Cal	Span	907.2
	Zero	3.30
Differen	ice (Zero)	3.2982
<2×Repeata	bility @ Zero?	YES
Pre Test	Zero	3.30
FIE LESI	Span	304.0
Differen	ice (Zero)	0.0000
<2% Relative	to Direct Span	YES
Differen	ce (Span)	3.1900
<2% Relative	to Direct Span	YES
Post Test	Zero	3.30
Post rest	Span	909.7
Differen	ice (Zero)	0.0000
Zero Drift <2%	of Applied Span?	YES
Differen	ce (Span)	5.6485
Span Drift <2%	of Applied Span?	YES
ero and Span Drift	<5% of Applied Span?	YES

Linx Printing Technologies Ltd Permit No : PG6/44(04)

Installation Name Visit Details : Manufacturing Main Vent : Annual Compliance – 2013

Variation No : 2004 Report Ref : P1869

Survey Dates : R001 Report Issue Date.

: 5th November 2013 : 15th November 2013

Environn	nental Compliar	nce Limited		PARTI	CULATE DATA	SAMPLING PR	OFORMA	Date of N	leasurement	05/11/2013		
	ECL/TPD/	1 2	27a	Time taken t	o change Ports	?	Start Time	08:05	End Time	10:05	Du	ration (mins)
								00.00				
Client		Linx	Printing	Stack Profile		Circular	Pitot	ID	487	Stack Thermocouple ID	464	Impingers
Site		St	Ives	Stack Area (n	rr̂)	0.20	Manome	eter ID	506	Stack Temp Reader ID	414	SOL/
Location		Manu	facturing	Barometric P	ressure (mb)	989	Barome	ter ID	629	Meter Thermocouple ID	366	Start Weight (
Stack ID		Mai	n Vent	Stat Pres. (m	mH ² 0) (Pa/9.81)	0.5	DGM		1.0277	Meter Temp Reader ID	366	End Weight (g
Test No.		TI	PM 1	Pitot coefficie	ent	1	Nozzle	e ID	801	Dry Gas Meter ID	366	Total weight (
Job No		P	1869	Balance ID		n/a	Nozzle Siz	ze (mm)	8.14	Timer ID	366	
ECL Site St	aff		AB	Console ID		366	Filter	·ID	883	Rotameter ID	366	If moisture
	1-					•						and gas
	Sample	Leak 1	Leak 2	Leak 3	Leak 4		Total		Volume (litres	, -		entering the
Start Volume	1377844.0								Sample Volume			weights n
Final Volume	1379732.0								mple Volume	1741.97		produ
Total Volume	1888.0	0.0	0.0	0.0	0.0]	1888.0	Isokinetio	Percentage	108.37		concent
1	1	1	1	1	,	1			-			isokinetic
Leak Check	First	Second	Third	Final	Maximum	Measured O₂	20.90	Mo	oisture	0.10		gas was
Leak Rate I/min	0.1			0.1	allowed leak rate is 2% of the	Measured CO₂ %		R	ef O ₂	11		entered t
Set Rate (I/min)	20			20	set rate	Measured COppm		Dry Gas Mo	lecular Weight	28.84		impinge
Time Of Leak Check	08:00			10:08								included to
					TDD/OZA :-	carried out v	ممامين ميم مالان					0.1%
Leak % of set rate	0.5			0.5] I PD/Z/AIS	carried out v	with an unine	ateu Sarri	Jili ig systei	HOHIY.		
Traverse Point		A2	A2	A2	A2	A2	A2	A2	A2	Total		
Time Interval (mins)		5	5	5	5	5	5	5	5	. 000		Acetone 9
Time/Point (mins)		0-5	5-10	10 - 15	15 - 20	20 - 25	25 - 30	30 - 35	35 - 40			DI Rinse S
ΔP (Pa)		13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.0		
Velocity at Stack (m/s)		4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70			
Sample Rate (I/min) 101.3 mbar,	Tm, Dry Gas	13.7	13.8	13.9	14.0	14.0	14.1	14.1	14.2	14.0		Original
Meter (Tm)		7.00	9.00	11.00	12.00	13.00	14.00	15.00	16.00	12.1		Tm
Stack Temp (Ts)		19.00	19.00	19.00	19.00	19.00	19.00	19.00	19.00	19.0		Ts
									•			%moisture
Traverse Point		A2	A2	A2	A2	A2	A2	A2	A2	Total		
Time Interval (mins)		5	5	5	5	5	5	5	5			
Time/Point (mins)		40 - 45	45 - 50	50 - 55	55 - 60	60 - 65	65 - 70	70 - 75	75 - 80			
ΔP (Pa)		13.00	13.00	13.00	13.00	13.00	13	13	13	13.0		
Velocity at Stack (m/s)		4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70			
Sample Rate (I/min) 101.3 mbar,	Tm, Dry Cas	14.3	14.4	14.5	14.6	14.7	14.8	14.8	14.9	14.6		
Meter (Tm)		18.00	21.00	22.00	24.00	26.00	28 29 30			24.8		
Stack Temp (Ts)		19.00	19.00	19.00	19.00	19.00 19.00 19 19 19 19.0						
Traverse Point		A2	A2	A2	A2	A2	A2	A2	A2	Total		
Time Interval (mins)		5	5	5	5	5	5	5	5			
Time/Point (mins)		80 - 85	85 - 90	90 - 95	95 - 100	100 - 105	105 - 110	110 - 115	115 - 120			
ΔP (Pa)		13	13	13	13	13	13	13	13	13.0		
Velocity at Stack (m/s)		4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70			
Sample Rate (I/min) 101.3 mbar,	Tm, Dry Gas	14.9	15.0	15.1	15.1	15.2	15.2	15.2	15.2	15.1		
Meter (Tm)		31	33	34	35	36	36	37	37	34.9		
Stack Temp (Ts)		19	19	19	19	19	19	19	19	19.0		

If moisture was not measured and gas was dried before entering the gas meter, impinger weights must be included to produce the moisture concentration used in the isokinetic calculations. If the gas was not dried before it entered the gas meter then impinger weights may be included to produce a nominal 0.1% moisture value.

120

n/a n/a

0.00

1.40

1.40

Start Weight (g)

End Weight (g)

Total weight (g)

Acetone SOL/	2345
DI Rinse SOL/	2341

Original Flowrate Settings							
Tm	40						
Ts	19						
%moisture							

Linx Printing Technologies Ltd Permit No : PG6/44(04)

Installation Name

Visit Details

: Manufacturing Main Vent : Annual Compliance – 2013

Variation No : 2004 Report Ref : P1869

: R001

Survey Dates : 5th November 2013 Report Issue Date. : 15th November 2013

Environm	ental Compliar	nce Limited		PARTI	CULATE DATA	SAMPLING PR	OFORMA	Date of N	leasurement	05/11/2013		
	ECL/TPD/	1 2	27a	Time taken t	o change Ports	?	Start Time	10:30	End Time	12:30	Du	ration (mins)
		_				-	0	10.00				
Client		Linx	Printing	Stack Profile		Circular	Pitot	Pitot ID		Stack Thermocouple ID	464	Impingers
Site		St	Ives	Stack Area (n	Stack Area (m²)		Manome	ter ID	506	Stack Temp Reader ID	414	SOL/
Location		Manuf	facturing	Barometric P	ressure (mb)	989	Barome	ter ID	629	Meter Thermocouple ID	366	Start Weight
Stack ID			n Vent	Stat Pres. (m	mH ² 0) (Pa/9.81)	0.5	DGM	-	1.0277	Meter Temp Reader ID	366	End Weight (
Test No.			PM 2	Pitot coefficie	ent	1	Nozzle		801	Dry Gas Meter ID	366	Total weight
Job No			1869	Balance ID		n/a	Nozzle Siz	. ,	8.14	Timer ID	366	If maniate we
ECL Site Sta	aff		AB	Console ID		366	Filter	ID	884	Rotameter ID	366	If moisture and gas
1	01-	11-4	11-0	11-0	1	1 1	T-4-1		Values (lites	CTD Day		entering the
Otant Malanan	Sample	Leak 1	Leak 2	Leak 3	Leak 4		Total	Firms at a d C	Volume (litres	, -		weights r
Start Volume Final Volume	1379780.0 1381760.0					•		•	Sample Volume mple Volume	1607.33 1750.46		produ
Total Volume	1980.0	0.0	0.0	0.0	0.0	•	1980.0		Percentage	108.90		concent
Total volume	1300.0	0.0	0.0	0.0	0.0	4 (1900.0	130Killetic	or er cer itage	100.90		isokinetic
Leak Check	First	Second	Third	Final	Maximum	Measured O₂	20.90	Mo	oisture	0.11		gas was
Leak Rate I/min		OCOGRA	mana		allowed leak	Measured ∞ ₂ %			lef O₂	11		entered t
	0.1			0.1	rate is 2% of the							impinge
Set Rate (I/min)	20			20	set rate	Measured 00 ppm		Dry Gas Mo	lecular Weight	28.84		included to
Time Of Leak Check	10:25			12:35								0.1%
Leak % of set rate	0.5			0.5	TPD/27A is	carried out v	with an unhe	ated sam	pling syster	m only.		0.170
					_							
Traverse Point		A2	A2	A2	A2	A2	A2	A2	A2	Total		
Time Interval (mins)		5	5	5	5	5	5	5	5			Acetone
Time/Point (mins)		0-5	5-10	10 - 15	15 - 20	20 - 25	25 - 30	30 - 35	35 - 40			DI Rinse S
ΔP (Pa)		13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.0		
Velocity at Stack (m/s)		4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70			
Sample Rate (I/min) 101.3 mbar, 1	im, ury Gas	14.8 28.00	14.8 29.00	14.9 30.00	15.0 32.00	15.0 32.00	15.0 33.00	15.0 33.00	15.1 34.00	14.9 31.4		Original
Meter (Tm) Stack Temp (Ts)		19.00	19.00	19.00	19.00	19.00	19.00	19.00	19.00	19.0		Tm Ts
Stack Temp(TS)		19.00	19.00	19.00	19.00	19.00	19.00	19.00	19.00	19.0		%moisture
Traverse Point		A2	A2	A2	A2	A2	A2	A2	A2	Total		7011 DISCHE
Time Interval (mins)		5	5	5	5	5	5	5	5			
Time/Point (mins)		40 - 45	45 - 50	50 - 55	55 - 60	60 - 65	65 - 70	70 - 75	75 - 80			
ΔP (Pa)		13.00	13.00	13.00	13.00	13.00	13	13	13	13.0		
Velocity at Stack (m/s)		4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70			
Sample Rate (I/min) 101.3 mbar, 7	īm, Dry Gas	15.1	15.1	15.2	15.3	15.3	15.3	15.4	15.4	15.2		
Meter (Tm)		34.00	35.00	37.00	38.00	39.00	39	40	40	37.8		
Stack Temp (Ts)		19.00	19.00	19.00	19.00	19.00	19	19	19	19.0		
Traverse Point		A2	A2	A2	A2	A2	A2	A2	A2	Total		
Time Interval (mins)		5	5	5	5	5	5	5	5			
Time/Point (mins)		80 - 85	85-90	90 - 95	95 - 100	100 - 105	105 - 110	110 - 115	115 - 120	13.0		
ΔP (Pa) Velocity at Stack (m/s)		13 4.70	13 4,70	4.70	13 4.70	13 4.70	13 4.70	13 4.70	13 4.70	13.0		
Sample Rate (I/min) 101.3 mbar, 7	Im Dry Gas	15.4	15.4	15.4	15.4	15.5	15.5	15.5	15.5	15.4		
Meter (Tm)	, y 0	41	41	41	41	42	42	42	42	41.5		
Stack Temp (Ts)		19	19	19	19	19	19	19	19	19.0		
Cast ronp (10)			10							10.0		

If moisture was not measured and gas was dried before entering the gas meter, impinger weights must be included to produce the moisture concentration used in the isokinetic calculations. If the gas was not dried before it entered the gas meter then impinger weights may be included to produce a nominal 0.1% moisture value.

120

n/a n/a

0.00

1.50

1.50

Start Weight (g)

End Weight (g)

Total weight (g)

Ì	Acetone SOL/	2345
	DI Rinse SOL/	2341

Original Flowrate Settings				
Tm	40			
Ts	19			
%moisture				

LABORATORY ANALYSIS RESULTS

Linx Printing Technologies Ltd Permit No : PG6/44(04) Variation No : 2004

Report Ref : P1869 : R001

Installation Name Visit Details Survey Dates Report Issue Date. : Manufacturing Main Vent : Annual Compliance – 2013 : 5th November 2013 : 15th November 2013

Scientific Analysis Laboratories Ltd Certificate of Analysis

Hadfield House Hadfield Street Combrook Manchester M16 9FE Tel: 0161 874 2400 Fax: 0161 874 2404

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: 360093-1

Date of Report: 14-Nov-2013

Customer: Environmental Compliance Ltd

Unit G1 Main Avenue

Treforest Industrial Estate

Pontypridd CF37 5BF

Customer Contact: Mr Andrew Barnes

Customer Job Reference: P1869 Customer Purchase Order: E2178 Date Job Received at SAL: 09-Nov-2013 Date Analysis Started: 11-Nov-2013 Date Analysis Completed: 14-Nov-2013

The results reported relate to samples received in the laboratory
Opinions and interpretations expressed herein are outside the scope of UKAS accreditation
This report should not be reproduced except in full without the written approval of the laboratory
Tests covered by this certificate were conducted in accordance with SAL SOPs
All results have been reviewed in accordance with QP22

Report checked and authorised by : Kayleigh McCann Project Manager Issued by : Kayleigh McCann Project Manager

Page 1 of 2

Linx Printing Technologies Ltd Permit No : PG6/44(04) Variation No : 2004 Report Ref : P1869

: R001

Installation Name Visit Details Survey Dates Report Issue Date.

: Manufacturing Main Vent : Annual Compliance – 2013 : 5th November 2013 : 15th November 2013

SAL Reference:	360093							
Customer Reference:	P1869							
Filter GFA 37mm Miscellaneous	Analysed as	Filter GF.	A 37mm					
			SA	L Reference	360093 001	360093 003	360093 005	360093 007
		Custo	mer Sampl	e Reference	ECL/13/5478	ECL/13/5480	ECL/13/5482	ECL/13/5484
			-7716	Test Sample	AR	AR	AR	AR
			Da	ate Sampled	05-NOV-2013	05-NOV-2013	05-NOV-2013	05-NOV-2013
Determinand	Method	LOD	Units	Symbol	05-NOV-2013	05-NOV-2013	05-NOV-2013	05-NOV-2013

SAL Reference:	360093							
Customer Reference:	P1869							
Wash(Acetone)	Analysed	as Wash(/	Acetone)					
Miscellaneous								
			SA	L Reference	360093 002	360093 004	360093 006	360093 008
		Custo	ner Sampl	e Reference	ECL/13/5479	ECL/13/5481	ECL/13/5483	ECL/13/5485
			- 4	Test Sample	AR	AR	AR	AR
			D	ate Sampled	05-NOV-2013	05-NOV-2013	05-NOV-2013	05-NOV-2013
Determinand	Method	LOD	Units	Symbol				
Particulates (Total)	Grav	0.3	ma	U	0.5	< 0.3	0.3	<0.3

Index to symbols used in 360093-1

Value	Description
AR	As Received
U	Analysis is UKAS accredited

Page 2 of 2

UNCERTAINTY CALCULATIONS

Linx Printing Technologies Ltd Permit No : PG6/44(04) Variation No : 2004 Report Ref : P1869

: R001

Installation Name Visit Details Survey Dates Report Issue Date.

: Manufacturing Main Vent : Annual Compliance – 2013 : 5th November 2013 : 15th November 2013

TVOC Measurement Uncertainty

Performance Characteristics	Standard Uncertainty	Distributiuon	Min Certified Ranges TVOC 0 - 15 mgC/m ³
Lack of fit ⁽¹⁾	u _{lof}	Rectangular (Divisor = √3)	0.40
Span drift ⁽²⁾	$u_{d.s}$	Rectangular (Divisor = $\sqrt{3}$)	0.35
Repeatability Standard Deviation (span)	u,	Normal (Divisor = 1)	4.69
Losses / leakage in the sample system ⁶	u_{loss}	Rectangular (Divisor = √3)	0.35
Temperature dependant span drift ⁽⁶⁾	u_t	Rectangular (Divisor = $\sqrt{3}$)	0.30
Interferents ⁽¹⁾	u_i	Rectangular (Divisor = $\sqrt{3}$)	4.39
Uncertainty of Reference Gas ⁽⁶⁾	u ref	Rectangular (Divisor = $\sqrt{3}$)	14.58

Note:

when
$$|(x_{i,\text{max}} - x_{i,\text{adj}})| = |(x_{i,\text{min}} - x_{i,\text{adj}})|$$
, then $u(x_i) = \frac{\Delta x_i}{\sqrt{3}}$

- Expressed as a percentage of the analyser range
 Expressed as maximum drift per 24hr period
 Expressed in units of final measurement, dry gas
 Expressed as a percentage of the final measured value
 Per one degree centigrade
- Expressed as standard uncertainty in units of measurement i.e. mg/m³ / %Vol
 Applies to TOC analyser (*Signal 3030 FID) only

Performance Characteristics	Uncertainty	Value of Standard Uncertainty	*TVOC 0 - 15 mgC/m ³
Lack of fit	u_{lof}	$u(x_i) = \frac{u_{lof} \times R_i}{\sqrt{3}} =$	0.035
Span drift	$u_{d,s}$	$u(x_i) = \frac{u_{d,s} \times R_i}{\sqrt{3}} =$	0.031
Repeatability Standard Deviation (span)	u_r	$\sigma = \sqrt{\frac{\sum_{j=1}^{n} (x_j - \overline{x})^2}{n-1}} =$	4.69
Losses / leakage in the sample system	u_{loss}	$u(x_i) = \frac{u_{loss} \times R_i}{\sqrt{3}} =$	2.75
Temperature dependant span drift	u_t	$u(x_i) = \frac{u_i}{100} \times R_i \times \sqrt{\frac{(X_{i,max} - X_{adp})^2 + (X_{i,mix} - X_{adp})(X_{i,max} - X_{adp}) + (X_{i,mix} - X_{adp})^2}{3}}$	0.052
Interferents	u_i	$u(x_i) = \frac{u_i \times R_i}{\sqrt{3}} =$	0.38
Uncertainty of Reference Gas	u _{ref}	$u(x_i) = \frac{u_{ref}}{\sqrt{3}} =$	14.58
Combined Standard Uncertainty	15.57		
Expanded measurement uncertainty (at	95% confide	nce) $U_{\it EXP} = 2 \times u_{\it c}$	31.14
Applied Span Concentration	1457.87		
Measured Span Concentration, STP Dry	1457.51		
Expanded measurement uncertainty as	% of Applied	Span	2 %

^{*} Signal 3030 FID

Installation Name

Linx Printing Technologies Ltd Permit No : PG6/44(04)

: Annual Compliance – 2013 : 5th November 2013 **Visit Details** Survey Dates Report Issue Date. Variation No : 2004 Report Ref : P1869 : R001 : 15th November 2013

TVOC Uncertainty of Measurement Results

Uncertainty Calculations Part 1

Performance Characteristics	Standard		Divisor	Min Certified Range
	Uncertainty	Distribution		TVOC
	(% of Range)	2.04.1244.01.	555.	0 - 15
				mgC/m ³
Lack of fit ⁽¹⁾	# lof	Rectangular		0.40
Span drift ⁽²⁾	u _{ds}		√3	0.35
Losses / leakage in the sample system ⁽⁴⁾	₩ loss			0.35
Temperature dependant span drift ⁽⁵⁾	u _t			0.30
Interferents ⁽¹⁾	u _i			4.39
Effect of Voltage Fluctuation ⁽⁷⁾	u_{ν}			1.80
Effect of Oxygen Synergism(7)	Il syn			

: Manufacturing Main Vent

Notes:

For rectangula r distributi ons, $u(x_i) = \frac{u \times R_i}{\sqrt{3}}$

$$\begin{aligned} & \text{For } u(x_i) = \Delta x_i \sqrt{\frac{(x_{i,\text{min}} - x_{i,\text{adj}})^2 + (x_{i,\text{min}} - x_{i,\text{adj}})(x_{i,\text{min}} - x_{i,\text{adj}}) + (x_{i,\text{min}} - x_{i,\text{adj}})^2}}{3}, \text{ when } \left| \langle x_{i,\text{min}} - x_{i,\text{adj}} \rangle \right| = \left| \langle x_{i,\text{min}} - x_{i,\text{adj}} \rangle \right|, \text{ then } u(x_i) = \frac{\Delta x_i}{\sqrt{3}} \end{aligned}$$

$$& \text{Where } u(x_i) = \frac{\sigma}{\sqrt{n}} \text{ (See note 6 below)}, \ \sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

Performance Characteristics	Uncertainty (Units of final measurement)	Distribution	Divisor	TV0C 0 - 15 mgC/m³
Lack of fit	u lof	Rectangular		0.035
Span drift	u _{d,s}			0.031
Temperature dependant span drift	u _t		√3	0.05
Interferents	u_i		ا در	0.38
Effect of Voltage Fluctuation (See Note)	u,			0.16

Uncertainty Calculations Part 2

Performance Characteristics	Uncertainty (Units of final measurement)	Date & Time	TVOC 0 - 15 mgC/m³
Losses / leakage in the sample system	u loss	05/11/13 08:02 - 12:02	0.348
Standard Error of Measured Value	u se	05/11/13 08:02 - 12:02	7.49

Effect on Uncertainty Caused by Oxygen

$$uCor_{O_2}^{R} = \frac{209\% - Q_{ref}}{209\% - Q_{measure} + Q09\% - Q_{measure}} \times \text{Uncertarity of } O_2 \text{ Meas} =$$

$$f_{o_1} = \frac{20.9\% - O_{2, ref}}{20.9\% - O_{2, measured}} = 1.0000$$

$$yf_{o_2} = \frac{vCrr^n_{o_2}}{s} x100 = 0.00$$

The effect of oxygen on the overall uncertainties (below) is incorporated using the following equation:-

$$u_{\textit{combined}} = \sqrt{\sum {(uf_{o_i})}^2 + (\textit{Uncertainty of Measurement of Determinand})^2}$$

Where oxygen or moisture correction is required, uncertainty based on the standard error of the measured peripheral value is converted to units of final measurement using a sensitivity coefficient C,

$$\therefore \ u(x_i) = C_i u_i \ \text{ where } \ C_i = \frac{\partial f}{\partial x_i}$$

Chicertainty Calculations Fait 5					
		*TV0C			
Uncertainty	Date & Time	0 - 15			
		mgC/m³			
Measured Concentration	05/11/13 08:02 - 12:02	99.00			
Expanded Uncertainty as Percentage of Measured Concentration	03/11/13 08:02 - 12:02	15 %			

Combined Standard Uncertainty

$$u_{e} = \sqrt{u_{kg}^{2} + u_{d,s}^{2} + u_{r}^{2} + u_{kess}^{2} + u_{t}^{2} + u_{i}^{2} + u_{rg}^{2} + u_{r}^{2} + u_{sym}^{2}}$$

Expanded uncertainty (at 95% confidence) $U_{\rm Exp}$ = $2 \times u_{\rm c}$

- Expressed as a percentage of the analyser range
 Expressed as maximum drift per 24hr period
 Expressed in units of final measurement
 Expressed as a percentage of the final measured value
 Per one degree centigrade
 Where the uncertainty of Oxygen is taken as the standard error of the time averaged value used to correct to Reference Oxygen
 Where the uncertainty of Moisture is taken as the standard error of the time averaged value used to correct to Dry Conditions
 Where no uncertainty is presented above, the uncertainty is >100%

Linx Printing Technologies Ltd Permit No : PG6/44(04)

: Annual Compliance – 2013 : 5th November 2013 **Visit Details** Survey Dates Report Issue Date. Variation No : 2004 Report Ref : P1869 : R001 : 15th November 2013

Uncertainty Calculations Part 1

Performance Characteristics	Standard		Divisor	Min Certified Range
	Uncertainty	Distribution		TVOC
	(% of Range)			0 - 15
				mgC/m³
Lack of fit ⁽¹⁾	u 1of	Rectangular		0.40
Span drift ⁽²⁾	u _{d,s}		√3	0.35
Losses / leakage in the sample system ⁽⁴⁾	u loss			0.35
Temperature dependant span drift ⁽⁵⁾	u _t			0.30
Interferents ⁽¹⁾	u _i			4.39
Effect of Voltage Fluctuation(7)	u ş			1.80
Effect of Oxygen Synergism ⁽⁷⁾	U gten			

: Manufacturing Main Vent

For rectangula r distributi ons, $u(x_i) = \frac{u \times R_i}{\sqrt{3}}$

For
$$u(x_i) = \Delta x_i \sqrt{\frac{(x_{i,\max} - x_{i,\text{exp}})^2 + (x_{i,\min} - x_{i,\text{exp}})(x_{i,\max} - x_{i,\text{exp}}) + (x_{i,\min} - x_{i,\text{exp}})^2}{3}}$$
, when $|(x_{i,\max} - x_{i,\text{exp}})| = |(x_{i,\min} - x_{i,\text{exp}})|$, then $u(x_i) = \frac{\Delta x_i}{\sqrt{3}}$. Where $u(x_i) = \frac{\sigma}{\sqrt{m}}$ (See note 6 below), $\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{m-1}}$

Installation Name

Performance Characteristics	Uncertainty (Units of final measurement)	Distribution	Divisor	TVOC 0 - 15 mgC/m ³
Lack of fit	u lof	Rectangular		0.035
Span drift	u d,s			0.031
Temperature dependant span drift	u _t		√3	0.05
Interferents	u_i		ا د	0.38
Effect of Voltage Fluctuation (See Note)	u,			0.16

Uncertainty Calculations Part 2

Performance Characteristics	Uncertainty (Units of final measurement)	Date & Time	TVOC 0 - 15 mgC/m³
Losses / leakage in the sample system	u _{loss}	05/11/13 12:02 - 16:02	0.244
Standard Error of Measured Value	u se	05/11/13 12:02 - 16:02	5.43

Effect on Uncertainty Caused by Oxygen

$$uCor_{o_2}^{\pi} = \frac{\Delta D \% - Q_{ref}}{(\Delta D \% - Q_{massered})(\Delta D \% - Q_{massered})} \times \text{Uncertary} \text{ of } Q_2 \text{ Meas} =$$

$$\begin{split} f_{o_{l}} &= \frac{20.9\% - O_{2,ref}}{20.9\% - O_{2,measured}} = & 1.0000 \\ & \textit{Uf}_{o_{2}} = \frac{\textit{uCorr}^{n}_{o_{2}}}{f_{o_{1}}} x100 = & 0.00 & \% \end{split}$$

The effect of oxygen on the overall uncertainties (below) is incorporated using the following equation:-

$$u_{\text{combined}} = \sqrt{\sum (uf_{o_i})^2 + (Uncertainty of Measurement of Determinand)^2}$$

Where oxygen or moisture correction is required, uncertainty based on the standard error of the measured peripheral value is converted to units of final measurement using a sensitivity coefficient C,

$$\therefore \ u(x_i) = C_i u_i \text{ where } C_i = \frac{\partial f}{\partial x_i}$$

Uncertainty Calculations Part 3

		*TV0C
Uncertainty	Date & Time	0 - 15
		mgC/m ³
Measured Concentration	05/11/13 12:02 - 16:02	69.33
Expanded Uncertainty as Percentage of Measured Concentration	03/11/13 12:02 - 16:02	16 %

Combined Standard Uncertainty

$$u_c = \sqrt{u_{lof}^2 + u_{d,s}^2 + u_{r}^2 + u_{loss}^2 + u_{t}^2 + u_{i}^2 + u_{ref}^2 + u_{r}^2 + u_{sym}^2}$$

Expanded uncertainty (at 95% confidence) $U_{\rm Exp}$ = $2 \times u_c$

- Expressed as a percentage of the analyser range
 Expressed as maximum drift per 24hr period
 Expressed in units of final measurement
 Expressed as a percentage of the final measured value
 Per one degree centigrade
 Where the uncertainty of Oxygen is taken as the standard error of the time averaged value used to correct to Reference Oxygen
 Where the uncertainty of Moisture is taken as the standard error of the time averaged value used to correct to Dry Conditions
 Where no uncertainty is presented above, the uncertainty is >100%

Linx Printing Technologies Ltd Permit No : PG6/44(04) Variation No : 2004

Report Ref : P1869 Installation Name **Visit Details**

: Manufacturing Main Vent : Annual Compliance – 2013 : 5th November 2013

Survey Dates Report Issue Date.

: 15th November 2013

Site: Linx Printing, St Ives Location: Manufacturing , Stack ID: Main Vent

: R001

$$u_{mass} = \sqrt{\sum (u_{filter})^2 + (u_{solution})^2}$$

	Recovered LAB Method Uncert (%) K=2				Standard	Combined		
Determinand	Filter	Solution	Mass	Filter	Solution	Filter	Solution	Uncertainty
	mg	mg	mg	mg	mg	mg	mg	mg
			TP	PM 1				
Particulates	0.62	0.50	1.12	0.14	0.27	0.0700	0.14	0.15

	TPM 1		Standard I	Jncertain	ty @ 95%
Sampled Volume (V _m)	1.89	m³	uV _m	0.001	m ³
Meter Correction Factor (Yd)	1.03				
Meter Temperature (T _m)	297.07	k	uT _m	1.5	k
Static Pressure of Stack P _{static}	0.50	mmH₂O	uP _{static}	0.25	mmH₂O
Absolute Stack Pressure ρ _s	741.81	mmHg	uρ _s	0.8	mmHg
Barometric Pressure ρ _b	741.99	mmHg	$u\rho_{b}$	3.8	mmHg
Average Differential Pressure (ΔP) + ρs	99.08	mmH₂O	u <u>A</u> H	0.25	mmH₂O
Oxygen content (O _{2,m})	20.90	%by volume	$uO_{2m} = \sigma / \sqrt{n}$	0.00	%by volume
Moisture Content (H ₂ O)	0.0996	%by volume	uH ₂ O	0.09	%by volume

Note: In the following calculations, the sensitivity coefficient (C) is estimated using:

$$C_{i} = \frac{\partial f}{\partial x_{i}}$$

For each factor, uncertainty is then calculated by $C_i u_i$ where C is the sensitivity coefficient, u is the standard uncertainty and i is the index identifying th contributing factor e.g. $i = uV_{mp} uT_{m}$ etc.

Where results are required at wet conditions, the following correction factor is used to convert the data from the dry gas meter:

$$f_{s,wet} = \frac{100}{(100 - H_2 O)} = 1.00$$

Uncertainty in correction factor to STP due to measured barometric pressure Uncertainty in volume @ STP due to volume correction factor uncertainty uncertainty component (uVb), measured static pressure uncertainty component (uVstd) & volume uncertainty component (uVm)

(uPstatic) & m	easured tempera	ture of dry gas u	ncertainty compone	ent (uT _m)					
	$f_s = \frac{273}{760} \times \frac{P_b}{}$	$\frac{+\frac{\Delta H}{13.6}}{T_m} \times Y_d =$	0.932		V st	d = V measured	$f_s =$	1.7597	
u <u>∧</u> H up _b uT _m	Maximum 0.49 0.49 0.49	Minimum 0.49 0.48 0.48	Sensitivity 0.0000477 0.000648 0.000852	ufstp 0.0000119 0.00243 0.00128	Effect of uVstd	Maximum m³ 1.76 1.76	Minimum m³ 1.75 1.76	Sensitivity 1.89 0.93	Standard Uncertainty (m³) 0.00490 0.000932
$\frac{uf_s}{f_s} = \sqrt{\frac{\sqrt{(u\Delta t)}}{(P_t)}}$	$\frac{0.49}{H^{2} + (uP_{s})^{2}} + \left(\frac{1}{(n+1)^{2}}\right)^{2} + \left(\frac{1}{(n+$	0.49 $\frac{uT_m}{T_m/273.15}\right)^2 + \left(\frac{1}{1}\right)^2 + \left(\frac{1}{1}\right)^2$	$\frac{0.00486}{\frac{uH_2O}{00/(100-H_2O)}\right)^2} =$	0.000425	$\frac{uV_{std}}{V_{std}} = \chi$	$\left(\frac{uV_{std}}{f_s}\right)^2 +$	$ \left(\frac{uV_m}{V_m}\right)^2 = $	0.00928	

Uncertainty of correction factor to reference oxygen due to measured Uncertainty in final measurement @ reference conditions due to mas oxygen uncertainty component (uf_{co}) & Uncertainty in final measurement uncertainty component (uM), oxygen correction uncertainty component @ reference conditions due to uncertainty component arrising from leak and/or loss (assumed 2% max) in the sample system (uL)

$f_{o_2} = \frac{20.9\% - O_{2, ref}}{20.9\% - O_{2, measured}} = 1.00$		$Conc = \frac{1}{V_n}$	$\frac{M_{\text{Recovered}}}{\times f_s \times f_{O_2}} =$	0.64	
$uCorr^*_{e_2} = \frac{20.9\% - O_{2, vol}}{(20.9\% - O_{2, neurord})x(20.9\% - O_{2, neurord})} \times Uncertainty \ of \ O_2 \ Measurem \ ent = 1.00$		Maximum mg/Nm³	Minimum mg/Nm³	Sensitivity	u mg/Nm³
	uМ	0.72	0.55	0.57	0.0864
$uf_{o_2} = \frac{uCorr''_{o_2}}{f_{o_2}} x100 = 0.00$	uV _{stp}	0.64	0.63	0.36	0.00336

surement Uncertainty of Determinand (excluding correction for oxygen)

$$\begin{aligned} u_{contined} &= \sqrt{\sum} (u_M)^2 + (u_L)^2 + (uV_{stp})^2 \\ &\text{Combined Uncertainty } \\ &\text{Incertainty } \\ &\text{mg/Nm}^3 &\text{mg/Nm}^3 \\ &0.09 &0.17 &0.64 \end{aligned} \begin{aligned} \text{Percent of Measured Uncertaitor mg/Nm}^3 \\ \text{Concentration mg/Nm}^3 \\ \text{Concentration of Measured Concentration of Measured Co$$

asurement Uncertainty of Determinand (including correction for oxygen)

$$u_{\it combined} = \sqrt{\sum (uf_{o_2})^2 + (Uncertain\,ty\,of\,\,Measurement\,of\,\,Determinand)^2}$$

Determinand	Measurement Uncertainty of Determinand	Measurement Uncertainty of Oxygen Corrn Factor	Overall Measurement Uncertainty inc O ₂ Corr ⁿ factor (Ucombined) %
Particulates	27.2	0.0	27.2

Linx Printing Technologies Ltd Permit No : PG6/44(04) Variation No : 2004

Report Ref : P1869

Installation Name **Visit Details** Survey Dates Report Issue Date.

: Manufacturing Main Vent : Annual Compliance – 2013 : 5th November 2013

: 15th November 2013

Site: Linx Printing, St Ives Location: Manufacturing , Stack ID: Main Vent

: R001

$$u_{mass} = \sqrt{\sum (u_{filter})^2 + (u_{solution})^2}$$

	Recovered LAB Method Uncert (%) K=2		Standard	Uncertainty	Combined			
Determinand	Filter	Solution	Mass	Filter	Solution	Filter	Solution	Uncertainty
	mg	mg	mg	mg	mg	mg	mg	mg
			TP	M2				
Particulates	0.0500	0.30	0.35	0.14	0.27	0.0700	0.14	0.15

	TPM 2		Standard U	Incertain	ty @ 95%
Sampled Volume (V _m)	1.98	m³	uV _m	0.001	m³
Meter Correction Factor (Yd)	1.03				
Meter Temperature (T _m)	310.03	k	uT _m	1.5	k
Static Pressure of Stack P _{static}	0.50	mmH₂O	uP _{static}	0.25	mmH₂O
Absolute Stack Pressure ρ _s	741.81	mmHg	uρ _s	0.8	mmHg
Barometric Pressure ρ _b	741.99	mmHg	uρ _b	3.8	mmHg
Average Differential Pressure (ΔP) + ρs	99.08	mmH₂O	u <u>⊿</u> H	0.25	mmH₂O
Oxygen content (O _{2,m})	20.90	%by volume u	$O_{2m} = \sigma / \sqrt{n}$	0.00	%by volume
Moisture Content (H ₂ O)	0.11	%by volume	uH ₂ O	0.09	%by volume

Note: In the following calculations, the sensitivity coefficient (C) is estimated using:

 $C_i = \frac{\partial f}{\partial x_i}$

For each factor, uncertainty is then calculated by $C_i u_i$ where C is the sensitivity coefficient, u is the standard uncertainty and i is the index identifying th contributing factor e.g. $i = uV_{mp} uT_{m}$ etc.

Where results are required at wet conditions, the following correction factor is used to convert the data from the dry gas meter:

$$f_{s,wet} = \frac{100}{(100 - H_2 O)} = 1.00$$

Uncertainty in correction factor to STP due to measured barometric pressure Uncertainty in volume @ STP due to volume correction factor uncertainty uncertainty component (upb), measured static pressure uncertainty component (uVstd) & volume uncertainty component (uVm)

(uPstatic) & measured temperature of drugse uncertainty component (uT)

(uPstatic) & m	neasured tempera	ture of dry gas u	ncertainty compone	ent (uI _m)					
	$f_s = \frac{273}{760} \times \frac{P_b}{}$	$\frac{+\frac{\Delta H}{13.6}}{T_m} \times Y_d =$	0.893		V si	td = V measurea	$f_s =$	1.7684	
идН	Maximum 0.47	Minimum 0.47	Sensitivity 0.0000466	ufstp 0.0000117		Maximum m³	Minimum m³	Sensitivity	Standard Uncertainty (m³)
up₀	0.48	0.47	0.000634	0.00238	Effect of uVstd	1.77	1.76	1.98	0.00476
uT _m	0.48	0.47	0.000815	0.00122	Effect of uV _m	1.77	1.77	0.89	0.000893
H₂O	0.48	0.47	0.00475	0.000413					
$\frac{uf_s}{f_s} = \sqrt{\frac{\sqrt{(u\Delta I)}}{(P_s)}}$	$\left(\frac{H^{2} + (uP_{s})^{2}}{(n/101.3)}\right)^{2} + \left(\frac{H^{2} + (uP_{s})^{2}}{(n/101.3)}\right)^{2}$	$\frac{uT_m}{\Gamma_m/273.15}$ $+ \left(\frac{1}{1}\right)^2$	$\frac{uH_2O}{00/(100-H_2O)}\right)^2 =$	0.00240	$\frac{uV_{std}}{V_{std}} = \gamma$	$\left(\frac{uV_{std}}{f_s}\right)^2 +$	$\left(\frac{uV_m}{V_m}\right)^2 =$	0.00945	

Uncertainty of correction factor to reference oxygen due to measured Uncertainty in final measurement @ reference conditions due to mas oxygen uncertainty component (uf_{co}) & Uncertainty in final measurement uncertainty component (uM), oxygen correction uncertainty component @ reference conditions due to uncertainty component arrising from leak (uf_{cosy}) and STP volume uncertainty component (uVstp) and/or loss (assumed 2%max) in the sample system (uL)

$f_{o_2} = \frac{20.9\% - O_{2, ref}}{20.9\% - O_{2, measured}} = 1.00$		$Conc = \frac{1}{V_{u}}$	$\frac{M_{\text{Recovered}}}{\times f_s \times f_{O_2}} =$	0.20	
$uCorr^*_{e_2} = \frac{20.9\% - O_{2, net}}{(20.9\% - O_{2, neurout})x(20.9\% - O_{2, neurout})} x Uncertainty of O_2 Measurem ent = 1.00$	υМ	Maximum mg/Nm³ 0.28	Minimum mg/Nm³	Sensitivity	u mg/Nm³ 0.0860
$uf_{o_2} = \frac{uCorr^{-n}o_2}{f_{o_2}} x100 = 000$	uV _{stp}	0.20	0.11	0.57	0.00106

surement Uncertainty of Determinand (excluding correction for oxygen)

$$\begin{array}{ll} u_{contined} = \sqrt{\sum} (u_M)^2 + (u_L)^2 + (uV_{stp})^2 \\ \hline {\rm Combined \\ Uncertainty \\ mg/Nm^3 \\ 0.09 \\ \hline \end{array} \begin{array}{ll} {\rm Expanded \\ {\rm Uncertainty \\ mg/Nm^3 \\ 0.07 \\ \hline \end{array}} \begin{array}{ll} {\rm Measured \\ {\rm Concentration \\ mg/Nm^3 \\ 0.20 \\ \hline \end{array}} \begin{array}{ll} {\rm Percent\ of \\ {\rm Measured \\ {\rm Concentration \\ concentration \\ 86.9\%}} \end{array}$$

86.9%

asurement Uncertainty of Determinand (including correction for oxygen)

$$u_{combined} = \sqrt{\sum (uf_{o_z})^2 + (Uncertain \, ty \, of \, Measurement \, of \, Determinand)^2}$$

Determinand	Measurement Uncertainty of Determinand	Measurement Uncertainty of Oxygen Corrn Factor	Overall Measurement Uncertainty inc O ₂ Corr ⁿ factor (Ucombined)%
Particulates	86.9	0.0	86.9