STACK EMISSIONS MONITORING REPORT

Unit 20 The Falcon Business Centre Romford RM3 8UR Tel: 01283 554373

Your contact at SOCOTEC LTD

Paul Jones
Project Manager - Romford
Tel: 07725 213132
Email: paul.jones@socotec.com

Operator & Address:

IKO Insulations UK Ltd
Founders House
Pierson Road
The Enterprise Campus
Alconbury Weald
Huntingdon
Cambridgeshire
PE28 4YA

Permit Reference

EPR Permit: EPR B04/18

Release Point:

Nederman Exhaust

Sampling Date(s):

17th October 2019

SOCOTEC Job Number:	LR01836
Report Date:	05-Nov-19
Version:	1
Report By:	Carl Redgrove
MCERTS Number:	MM 03 173
MCERTS Level:	MCERTS Level 2 - Team Leader
Technical Endorsements:	1, 2, 3 & 4
Report Approved By:	Nik Agopian
MCERTS Number:	MM 08 902
Business Title:	MCERTS Level 2 - Team Leader
Technical Endorsements:	1, 2, 3 & 4
Signature:	Here

CONTENTS

EXECUTIVE SUMMARY

Stack Emissions Monitoring Objectives

- Plant
- Operator
- Stack Emissions Monitoring Test House

Emissions Summary

Monitoring Times

Process Details

Monitoring Methods

Analytical Methods

- Sampling Methods with Subsequent Analysis
- On-Site Testing

Sampling Location

- Sampling Plane Validation Criteria
- Duct Characteristics
- Sampling Lines & Sample Points
- Sampling Platform
- Sampling Location / Platform Improvement Recommendations

Sampling and Analytical Method Deviations

APPENDICES

APPENDIX 1 - Monitoring Schedule, Calibration Checklist & Monitoring Team

APPENDIX 2 - Summaries, Calculations, Raw Data and Charts

APPENDIX 3 - Measurement Uncertainty Budget Calculations

MONITORING OBJECTIVES

IKO Insulations UK Ltd operates a six liquid chemicals mixed. foam forms as mix cools process at Huntingdon which is subject to EPR Permit EPR B04/18, under the Environmental Permitting Regulations 2010.

SOCOTEC LTD were commissioned by Mark Thorne to carry out stack emissions monitoring to determine the release of prescribed pollutants from the following Plant under normal operating conditions.

The results of these tests shall be used to demonstrate compliance with a set of emission limit values for prescribed pollutants as specified in the Plant's EPR Permit, EPR B04/18.

Plant

Nederman Exhaust

Operator

IKO Insulations UK Ltd Founders House Pierson Road The Enterprise Campus Alconbury Weald Huntingdon Cambridgeshire

EPR Permit: EPR B04/18

Stack Emissions Monitoring Test House

SOCOTEC - Romford Laboratory
Unit 20
The Falcon Business Centre
Romford
RM3 8UR
UKAS and MCERTS Accreditation Number: 1015

MCERTS accredited results will only be claimed where both the sampling and analytical stages are UKAS accredited.

This test report shall not be reproduced, except in full, without written approval of SOCOTEC LTD.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

IKO Insulations UK Ltd Huntingdon Nederman Exhaust LR01836 / Version 1 17th October 2019 EPR Permit: EPR B04/18

EMISSIONS SUMMARY					
Parameter	Units	Result	Calculated Uncertainty +/-	Emission Limit Value (ELV)	MCERTS accredited result
Isocyanates	mg/m³	0.0002	0.001	0.1	✓
Isocyanates Emission Rate	g/hr	0.002	0.011	-	•
Moisture	%	0.82	0.48	-	✓
Stack Gas Temperature	°C	40	-	-	
Stack Gas Velocity	m/s	14.0	0.33	-	
Gas Volumetric Flow Rate (Actual)	m³/hr	12418	635	-	1
Gas Volumetric Flow Rate (STP, Wet)	m³/hr	10628	544	-	•
Gas Volumetric Flow Rate (STP, Dry)	m³/hr	10540	539	-	
Gas Volumetric Flow Rate at Reference Conditions	m³/hr	10628	544	-	

ND = None Detected,

Results at or below the limit of detection are highlighted by bold italic text.

The above volumetric flow rate is calculated using data from the preliminary survey. Mass emissions for non isokinetic tests are calculated using these values. For all isokinetic testing the mass emission is calculated using test specific flow data and not the above values.

Reference conditions are 273K, 101.3kPa without correction for water vapour

MONITORING TIMES						
Parameter	Sampling Date(s)	Sampling Times	Sampling Duration			
Isocyanates Run 1	16 October 2019	14:13 - 16:14	120 minutes			
Preliminary Stack Traverse	16 October 2019	13:55	-			

PROCESS DETAILS

Parameter	Process Details
Description of process	Six liquid chemicals mixed. Foam forms as mix cools
Continuous or batch	Continuous
Product Details	Foam
Part of batch to be monitored (if applicable)	N/A
Normal load, throughput or continuous rating	Normal
Fuel used during monitoring	n/a
Abatement	None
Plume Appearance	None visible

Monitoring Methods

The selection of standard reference / alternative methods employed by SOCOTEC is determined, wherever possible by the hierarchy of method selection outlined in Environment Agency Technical Guidance Note (Monitoring) M2.

	MONITORING METHODS							
Species	Method Standard Reference Method / Alternative Method	SOCOTEC Technical Procedure	UKAS Lab Number	MCERTS Accredited Method	Limit of Detection (LOD)	Calculated MU +/- % Result	Calculated MU +/- % ELV	
Isocyanates	SRM - US EPA CTM 036	AE 116	1015	Yes	0.0001 mg/m³	562.6%	1.1%	
Moisture	SRM - BS EN 14790	AE 105	1015	Yes	0.21%	57.80%	N/A - No ELV	
Velocity	SRM - BS EN ISO 16911-1	AE 154	1015	Yes	5 Pa	2.4%	N/A - No ELV	
Volumetric Flow Rate	SRM - BS EN ISO 16911-1	AE 154	1015	Yes	-	5.1%	N/A - No ELV	

BS EN 14790 has been validated over a range of 4 - 40%. It is however the prefered method of the Environment Agency for concentrations below 4%

Analytical Methods

The following tables list the analytical methods employed together with the custody details. Unless otherwise stated the samples are archived at the analysis lab location.

	SAMPLING METHODS WITH SUBSEQUENT ANALYSIS						
Species	Analytical Technique	Analytical Procedure	UKAS Lab Number	UKAS Accredited Lab Analysis	Analysis Lab	Analysis Report number	Archive Period
Isocyanates	High performance Liquid Chromatography - Ultra Violet	M119	0605	Yes	RPS	WK19-9993	8 Weeks

ON-SITE TESTING							
Species	Analytical Technique	Analytical Procedure	UKAS Lab Number	MCERTS Accredited Analysis	Laboratory	Data Archive Location	Archive Period
Moisture	Gravimetric	AE 105	1015	Yes	SOCOTEC Romford	-	-

SAMPLING LOCATION						
Sampling Plane Validation Criteria	Value	Units	Requirement	Compliant	Method	
Lowest Differential Pressure	139	Pa	>= 5 Pa	Yes	BS EN 15259	
Lowest Gas Velocity	13.8	m/s	-	-	-	
Highest Gas Velocity	14.3	m/s	-	-	-	
Ratio of Gas Velocities	1.0	: 1	< 3:1	Yes	BS EN 15259	
Mean Velocity	14.0	m/s	-	-	-	
Maximum angle of flow with regard to duct axis	<15	0	< 15°	Yes	BS EN 15259	
No local negative flow	Yes	-	-	Yes	BS EN 15259	

DUCT CHARACTERISTICS					
Value Units					
Shape	Circular	-			
Shape Depth Width	0.56	m			
Width	-	m			
Area	0.25	m^2			
Port Depth	70	mm			

SAMPLING LINES & POINTS					
	Isokinetic	Non-Iso & Gases			
Sample port size	4"BSP	-			
Number of lines used	2	-			
Number of points / line	4	-			
Duct orientation	Vertical	-			
Filtration	In	-			

SAMPLING PLATFORM			
General Platform Information			
Permanent / Temporary Platform / Ground level / Floor Level / Roof	Permenant		
Inside / Outside	Inside		

M1 Platform requirements	
Is there a sufficient working area so work can be performed in a compliant manner	Yes
Platform has 2 levels of handrails (approximately 0.5 m & 1.0 m high)	Yes
Platform has vertical base boards (approximately 0.25 m high)	Yes
Platform has removable chains / self closing gates at the top of ladders	Yes
Handrail / obstructions do not hamper insertion of sampling equipment	Yes
Depth of Platform = >Stack depth / diameter + wall and port thickness + 1.5m	Yes

Sampling Platform Improvement Recommendations (if applicable)

The sampling location meets all the requirements as specified in EA Guidance Note M1.

Sampling & Analytical Method Deviations

In this instance there were no deviations from the sampling and analytical methods employed.

APPENDICES

CONTENTS

APPENDIX 1 - Monitoring Schedule, Calibration Checklist & Monitoring Team

APPENDIX 2 - Summaries, Calculations, Raw Data and Charts

APPENDIX 3 - Measurement Uncertainty Budget Calculations

APPENDIX 1 - Monitoring Schedule, Calibration Checklist & Monitoring Team

MONITORING SCHEDULE					
Species	Method Standard Reference Method / Alternative Method	SOCOTEC Technical Procedure	UKAS Lab Number	MCERTS Accredited Method	Number of Samples
Isocyanates	SRM - US EPA CTM 036	AE 116	1015	Yes	1
Moisture	SRM - BS EN 14790	AE 105	1015	Yes	1
Velocity	SRM - BS EN ISO 16911-1	AE 154	1015	Yes	1

APPENDIX 1 - Monitoring Schedule, Calibration Checklist & Monitoring Team

	(CALIBRATEABLE EQUIPM	ENT CHECKLIS	ST		
Extractive Sampling		Instrumental Analys		Miscellaneous		
	_	•				
Equipment	Equipment I.D.	Equipment	Equipment I.D.	Equipment	Equipment I.D.	
Control Box DGM	P1959	Horiba PG-250 Analyser	-	Laboratory Balance	-	
Box Thermocouples	P1959	FT-IR Gasmet	-	Tape Measure	P2255	
Meter In Thermocouple	P1959	FT-IR Oven Box	-	Stopwatch	-	
Meter Out Thermocouple	P1959	Bernath 3006 FID	-	Protractor	-	
Control Box Timer	P1959	Signal 3030 FID	-	Barometer	P2748	
Oven Box	-	Servomex	-	Digital Micromanometer	-	
Probe	-	JCT Heated Head Filter	-	Digital Temperature Meter	-	
Probe Thermocouple	P2713	Thermo FID	-	Stack Thermocouple	P2714	
Probe	-	Stackmaster	-	Mass Flow Controller	P2950	
Probe Thermocouple	-	FTIR Heater Box for Heated Line	-	MFC Display module	P2950	
S-Pitot	-	Anemometer	-	1m Heated Line (1)	-	
L-Pitot	-	Ecophysics NOx Analyser	-	1m Heated Line (2)	-	
Site Balance	P1774	Chiller (JCT/MAK 10)	-	1m Heated Line (3)	-	
Last Impinger Arm	-	Heated Line Controller (1)	-	5m Heated Line (1)	-	
Dioxins Cond. Thermocouple	-	Heated Line Controller (2)	-	10m Heated Line (1)	-	
Callipers	-	Site temperature Logger	-	10m Heated Line (2)	-	
Small DGM	-		-	15m Heated Line (1)	-	
Heater Controller	-		-	20m Heated Line (1)	-	
Inclinometer (Swirl Device)	P2094		-	20m Heated Line (2)	-	

NOTE: If the equipment I.D is represented by a dash (-), then this piece of equipment has not been used for this test.

CALIBRATION GASES							
Gas (traceable to ISO 17025)	Cylinder I.D Number	Supplier	ppm	%	Analytical Tolerance +/- %		
-	-	-	-	-	-		

STACK EMISSIONS MONITORING TEAM

MONITORING TEAM								
Personnel	Rereamed MCERTS		ERTS	TE / H&S Qualifications and Expiry Date				
reisonnei	Number	Level	Expiry	TE1	TE2	TE3	TE4	H&S
Carl Redgrove	MM 03 173	MCERTS Level 2	Mar-20	Oct-24	Mar-20	Mar-21	Jun-21	Apr-24
Allan Kigozi	MM 16 1368	MCERTS Level 1	May-21	-	-	-	-	May-21

APPENDIX 2 - Summaries, Calculations, Raw Data and Charts

ISOCYANATES SUMMARY								
Test	Sampling Times	Concentration	LOD	ELV	Emission			
Test		mg/m³	mg/m³	mg/m³	Rate g/hr			
Run 1	14:13 - 16:14 16 October 2019	0.000	0.0001	0.1	0.0			
Field Blank	-	0.0001	-	1	-			

Reference conditions are 273K, 101.3kPa without correction for water vapour

	INDIVIDUAL ISOCYANATES SUMMARY										
Test		Lab Result	Concentration	LOD	Emission						
Test		ug	mg/m³	mg/m³	Rate g/hr						
	HDI	0.07	0.0000	0.0000	0.000						
Run 1	Run 1 MDI		0.0001	0.0000	0.001						
	TDI	0.20	0.0001	0.0000	0.001						
	HDI	0.07	0.0000	0.0000	0.000						
Blank 1	MDI	0.07	0.0000	0.0000	0.000						
	TDI	0.13	0.0001	0.0000	0.001						

Reference conditions are 273K, 101.3kPa without correction for water vapour

APPENDIX 2 - Summaries, Calculations, Raw Data and Charts

ISOKINETIC SAMPLING EQUATIO	NS 1			IS	OCYANATES
Absolute pressure of stack gas, P _s			Velocity of stack gas, V _s		
Barometric pressure, P _b	kPa	101	Velocity pressure coefficient, Cp		0.86
Stack static pressure, P _{static}	Pa	-1700	Mean of velocity heads, DP _{avg}	Pa	146
$P_s = P_b + (P_{static})$	KPa	99	Mean stack gas temperature, T _s	К	298
13.6			Gas density _(wet, ambient) , p		
Vol. of water vapour collected, V _{wstd}			p=(Ms*Ps)/(8.314*Ts)	kg/m³	1.153
Moisture trap weight increase,Vlc	g	H ₂ 0 by Non Iso			
$V_{wstd} = (0.001246)(V_{lc})$	m ³	-	Stack Velocity, Vs $V_s = Cp \sqrt{\frac{\Delta DPav_s}{p}}$	m/s	13.67
Volume of gas metered dry, V _{mstd}			Actual flow of stack gas, Q _a		
Volume of gas sample through gas meter, \	$I_{\rm m}$ ${\rm m}^3$	2.7260	Area of stack, A _s		0.25
Gas meter correction factor, Y _d		0.9939	$Q_a = (60)(A_s)(V_s)$	m ³ /min	202
Mean dry gas meter temperature, T _m	K	298	Dry total flow of stack gas, Q _{std}		
Mean pressure drop across orifice, DH mr	mH_2O	48.423	Conversion factor (K/mm.Hg)		0.3592
$V_{mstd} = (0.3592)(V_m)(P_b + (DH/13.6))(Y_d)$		2.488	$Q_{std} = (Q_a)P_s(0.3592)(1-B_{wo})$	m³/min	180.07
T _m + 273			(T _s) +273		
Volume of gas metered wet, V _{mstw}			Wet total flow of stack gas, Q _{stw}		
$V_{mstw} = V_{mstd} + V_{wstd}$	m^3	2.5086	$Q_{stw} = (Q_a)P_s(0.3592)$	m³/min	181.6
Vol. of gas metered at O $_2$ Ref. Cond., V $_{ m mstd@}$	X%02		(T _s) +273		
Is the process burning hazardous waste? (I		No	Dry total flow of stack gas at X% O_2 , O_3	Q _{stdO2}	
no favourable oxygen correction)	-		$Q_{stdO2} = (Q_a)P_s(0.3592)(1-B_{wo})(O_2REF)$	m³/min	No O2 Ref
% oxygen measured in gas stream, act%O2		20.9	(T _s) +273		
% oxygen reference condition		21	Percent isokinetic, %I		
O_2 Reference $O2$ Ref = 21.0 - act%02		No O2 Ref	Nozzle diameter, D _n	mm	6.00
Factor 21.0 - ref%02			Nozzle area, A _n	mm^2	28.28
$V_{\text{mstd}@X\%oxygen} = (V_{\text{mstd}}) (O_{2 \text{ Ref}})$	m^3	No O2 Ref	Total sampling time, q	min	120
Moisture content, B _{wo}			$%I = (4.6398E6)(T_s)(V_{mstw})$	%	101
$B_{wo} = V_{wstd}$		0.0082	$(P_s)(V_s)(A_n)(q)(1-B_{wo})$		
V _{mstd} + V _{wstd}	%	0.82	Acceptable isokinetic range 95% to 1	15%	Yes
Moisture by FTIR	%	-	Isocyanates Concentration, C		<u> </u>
Molecular weight of dry gas, M _d			Mass of isocyanates collected , N	ug	0
CO ₂	%	0.03	$C_{\text{wet}} = \frac{M_n}{V_{\text{mstw}}}$	mg/m³	0.000
O_2	%	20.90	$V_{ m mstw}$		
Total	%	20.93	$C_{dry} = \frac{M_n}{V_{mstd}}$	mg/m³	0.000
N ₂ (100 -Total)	%	79.07			
M = 0.44(%CO \10.32(%O \10.38(%N \		20.04	$C_{dry@X\%O2} = M_n$	mg/m³	No O2 Ref
M _d = 0.44(%CO ₂)+0.32(%O ₂)+0.28(%N ₂)		28.84	V _{mstd@X%oxygen}		
Molecular weight of wet gas, M _s	a/amcl	20.0	Isocayanates Emission Rates, E	a/h	0.00
$M_s = M_d(1 - B_{wo}) + 18(B_{wo})$	g/gmol	28.8	$E = [(C_{wet})(Q_{stw})(60)] / 1000$	g/hr	0.00

ISOCYANATES QUALITY ASSURANCE CHECKLIST

Leak Test Results	Mean Sampling Rate	Pre-sampling Leak Rate	Post-sampling Leak Rate	Maximum Vacuum	Acceptable Leak Rate	Leak Tests Acceptable
	litre/min	litre/min	litre/min	mm Hg	litre/min	
Run 1	22.6	0.14	0.11	-254	0.45	Yes

Isokinetic Criterion Compliance	Isokinetic Variation %	Acceptable Isokineticity
Run 1	101.1	Yes

Filtration	Filter Material	Filter Size	Maximum Filtration	Filters Coated with
		mm	Temperature °C	
Run 1	Quartz Fibre	47	0	1-(2-pyridyl)piperazine

MOISTURE CALCULATIONS

	Moisture Determination - Non Isokinetic							
Test Number	Sampling Time and Date	Start Weight End Weight Total gain		Concentration	LOD	Uncertainty		
		kg	kg	kg	%	%	%	
Run 1	14:42 - 15:42 17 October 2019	3.4414	3.4418	0.0004	0.8	0.21	57.8	

ı	Moisture Quality Assurance							
Test Number Sampling Total Volume Duration Sampled		Sampling Rate	Start Leak Rate	End Leak Rate	Acceptable Leak Rate	Leak Tests Acceptable?		
		mins	1	l/min	l/min	l/min	l/min	
	Run 1	60	60	1.0	0.01	0.01	0.02	Yes

PRELIMINARY STACK SURVEY

Stack Characteristics		
Stack Diameter / Depth, D	0.56	m
Stack Width, W	-	m
Stack Area, A	0.25	m ²
Average stack gas temperature	40	°C
Stack static pressure	-1.7	kPa
Barometric Pressure	101.1	kPa

Stack Gas Comp	Stack Gas Composition & Molecular Weights									
Component	Molar	Density	Conc	Dry Volume	Dry Conc	Conc	Wet Volume	Wet Conc		
	Mass	kg/m³	Dry	Fraction	kg/m³	Wet	Fraction	kg/m³		
	M	р	% Vol	r	pi	% Vol	r	pi		
CO ₂	44	1.963059	0.028571	0.000286	0.000561	0.028336	0.000283	0.000556		
O_2	32	1.427679	20.900000	0.209000	0.298385	20.727821	0.207278	0.295927		
N ₂	28	1.249219	79.071429	0.790714	0.987775	78.420020	0.784200	0.979638		
H ₂ O	18	0.803070	-	-	-	0.823823	0.008238	0.006616		

Where: p = M / 22.41 pi = r x p

Calculation of Stack Gas Densities					
Determinand	Result	Units			
Dry Density (STP), P STD	1.2867	kg/m³			
Wet Density (STP), P STW	1.2827	kg/m³			
Dry Density (Actual), P Actual	1.1012	kg/m³			
Average Wet Density (Actual), P ActualW	1.098	kg/m³			

Where

 $P_{\rm STD}$ = sum of component concentrations, kg/m 3 (not including water vapour)

 $P_{\text{Actual}} = P_{\text{STD}} x (\text{Ts / Ps}) x (\text{Pa / Ta})$

 P_{STW} = (P_{STD} + pi of H_2O) / (1 + (pi of H_2O / 0.8036))

 $P_{ActualW} = P_{STW} x (Ts / Ps) x (Pa / Ta)$

PRELIMINARY STACK SURVEY

TRAVERSE 1

Date of Survey	16 October 2019
Time of Survey	13:55
Velocity Measurement Device:	S-Type Pitot

	Sampling Line A								
Traverse	Distance	DP pt	DP pt	Temp	Velocity	Volumetric	O ₂	Angle	
Point	into	Pa	mmH ₂ O	°C	m/s	Flow Rate (actual)	%	of Swirl	
	duct (m)	(average of 3 readings)	(average of 3 readings)			m³/s	Vol	o	
1	0.08	147.0	15.0	40	14.1	3.5	-	<15	
2	0.48	151.6	15.5	40	14.3	3.5	-	<15	
-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	
Mean	-	149.3	15.2	40	14.2	3.5	-	-	

Sampling Line B								
Traverse	Distance	DP pt	DP pt	Temp	Velocity	Volumetric	O_2	Angle
Point	into	Pa	mmH ₂ O	°C	m/s	Flow Rate (actual)	%	of Swirl
	duct (m)	(average of 3 readings)	(average of 3 readings)			m³/s	Vol	o
1	0.08	143.4	14.6	40	13.9	3.4	-	<15
2	0.48	140.5	14.3	40	13.8	3.4	-	<15
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
Mean	-	141.9	14.5	40	13.8	3.4	-	-

PRELIMINARY STACK SURVEY QUALITY ASSURANCE CHECKLIST

PITOT LEAK CHECK								
		Pre Traver	se Leak Rate			Post Traver	se Leak Rate	
Run	Start Value	End Value	Difference	Outcome	Start Value	End Value	Difference	Outcome
	mmH20	mmH2O	%		mmH20	mmH20	%	
Run 1	88	84	4.5	Pass	101	98	3.0	Pass

To complete a compliant pitot leak check a pressure of over 80 mmH₂O (or 800 Pa) is applied and the pressure drop monitored over 5 mins. A drop of less than 5% must be observed.

S-Type Pitot Stagnation Check						
Run	Stagnation (Pa)	Reference (Pa)	Difference (Pa)	Outcome (Permitted +/- 10 Pa)		
Run 1	-1700	-1700	0.0	Pass		

PRELIMINARY STACK SURVEY (CONTINUED)

Sampling Plane Validation Criteria						
EA Technical Guidance Note (Monitoring) M1	Result	Units	Requirement	Compliant		
Lowest Differential Pressure	140	Pa	>= 5 Pa	Yes		
Lowest Gas Velocity	13.8	m/s	-	-		
Highest Gas Velocity	14.3	m/s	-	-		
Ratio of Gas Velocities	1.0	-	< 3:1	Yes		
Maximum angle of flow with regard to duct axis	<15	0	< 15°	Yes		
No local negative flow	Yes	-	-	Yes		

Calculation of Stack Gas	Velocity, V	
Velocity at Traverse Point, $V = K_{pt} \times (1-e) * O(2 * DF)$	P _{pt} / P _{ActualW})	
Where:		
K_{pt} = Pitot tube calibration coefficient		
(1-e) = Compressibility correction factor, assumed	at a constant 0.99	98
Average Stack Gas Velocity, Va	14.0	m/s

Calculation of Stack Gas Volumetric Flowrate, Q						
Duct gas flow conditions	Actual	Reference	Units			
Temperature	40	0	°C			
Total Pressure	99.4	101.3	kPa			
Oxygen	20.9	21	%			
Moisture	0.82	0.82	%			
Pitot tube calibration coefficient, K_{pt}	0.86					

Gas Volumetric Flowrate	Result	Units
Average Stack Gas Velocity (Va)	14.00	m/s
Stack Area (A)	0.25	m ²
Gas Volumetric Flowrate (Actual), Q _{Actual}	12418	m³/hr
Gas Volumetric Flowrate (STP, Wet), Q _{STP}	10628	m³/hr
Gas Volumetric Flowrate (STP, Dry), Q _{STP,Dry}	10540	m³/hr
Gas Volumetric Flowrate (REF), Q _{Ref}	10628	m³/hr

Where

Q_{Actual} = Va x A x 3600

 Q_{STP} = Q (Actual) x (Ts / Ta) x (Pa / Ps) x 3600

 $Q_{STP,Dry} = Q (SIP) / (100 - (100 / Ma)) x 3600$

 $Q_{Ref} = Q (STP) x ((100 - Ma) / (100 - Ms)) x ((21 - O_2a) / (21 - O_2s))$

Nomenclature:

Ts = Absolute Temperature, Standard Conditions, 273 K

Ps = Absolute Pressure, Standard Conditions, 101.3 kPa

Ta = Absolute Temperature, Actual Conditions, K

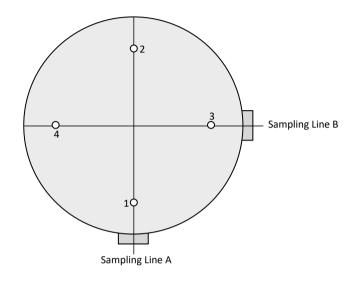
Pa = Absolute Pressure, Actual Conditions, kPa

Ma = Water vapour, Actual Conditions, % Vol

 $\mbox{Ms = Water vapour, Reference Conditions, } \% \mbox{ Vol}$

 O_2a = Oxygen, Actual Conditions, % Vol

O₂s = Oxygen, Reference Conditions, % Vol



APPENDIX 2 - Summaries, Calculations, Raw Data and Charts

STACK DIAGRAM

	Value	Units
Stack Depth	0.56	m
Stack Width	-	m
Area	0.25	m^2


Non-Isokinetic/Gases Sampling					
Sampling	Distance	Distance into	Units		
Point	(% of Depth)	Stack			
-	i	-	1		

Isokinetic sampling point
Isokinetic sampling points not used
Non Isokinetic/Gases sampling point

	Isokinetic	Sampling	
Sampling	Distance	Distance into	Swirl
Point	(% of Depth)	Stack (m)	0
1	14.6	0.08	< 15
2	85.4	0.48	< 15
3	14.6	0.08	< 15
4	85.4	0.48	< 15
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-

SAMPLING LOCATION

APPENDIX 3 - Measurement Uncertainty Budget Calculations

MEASUREMENT UNCERTAINTY BUDGET - ISOCYANATES

Run	Sampled	Sampled Gas	Sampled Gas	Sampled Gas	Oxygen	Leak	Uncollected
	Volume m³	Temn K	Pressure kPa	Humidity % by volume	Content % by volume	%	Mass mg
MU required	≤ 2%	<u><</u> 2%	<u><</u> 1%	<u><</u> 1%	<u><</u> 10%	<u><</u> 2%	≤ 10% of ELV
Run 1	0.001	2	0.5	1	N/A	-	-
as a %	0.04	0.66	0.50	1.00	N/A	0.49	0.07
compliant?	Yes	Yes	Yes	Yes	N/A	Yes	Yes

Run	Volume (STP)	Mass of	O2 Correction	Leak	Uncollected	Combined
		Isocyanates			Mass	uncertainty
	m³	mg	-	mg/m³	mg	
Run 1	2.23	0.0005	1.00	0.000	0.0000	-
MU as mg/m³	0.00	0.0005	-	0.000	0.0000	8.70
MU as %	1.30	0.0281	-	0.281	8.60	-

R1 - Uncertainty expressed at a 95% confidence	0.001	/ 3	562.63	0/ Danula	1.05	% ELV
level (where k = 2)	0.001	mg/m³	302.03	% Result	1.05	% ELV

(k is a coverage factor which gives a 95% confidence in the quoted figures)

Reference – SOCOTEC Technical Procedure AE150 Estimation of Uncertainty of Measurement

APPENDIX 3 - Measurement Uncertainty Budget Calculations

MEASUREMENT UNCERTAINTY BUDGET - MOISTURE

Run	Sampled Volume	Sampled Gas Temp	Sampled Gas Pressure	Sampled Gas Humidity		
	m³	K	kPa	% by volume	% by volume	%
MU required	<u><</u> 2%	<u><</u> 2%	<u><</u> 1%	<u><</u> 1%	<u><</u> 10%	<u><</u> 2%
Run 1	0.000	2.0	0.50	1.0	N/A	-
as a %	0.03	0.64	0.50	1.0	N/A	1.00
compliant?	Yes	Yes	Yes	Yes	N/A	Yes

Run	Volume (STP)	Mass Gained	O2 Correction	Leak	Uncollected	Combined
					Mass	uncertainty
	m³	mg		mg/m³	mg	
Run 1	0.1	400	1.0	38.5	58	-
MU as % v/v	0.01	0.21	-	0.00	0.12	0.24
MU as %	1.3	25.0	-	0.6	14.4	-

R1 - Uncertainty expressed at a 95% confidence level (where k = 2)	0.48	% v/v	57.80	%	1
--	------	-------	-------	---	---

Reference - SOCOTEC Technical Procedure AE150 Estimation of Uncertainty of Measurement

APPENDIX 3 - Measurement Uncertainty Budget Calculations

MEASUREMENT UNCERTAINTY BUDGET - VELOCITY & VOLUMETRIC FLOW RATE

Measured Velocity at Actual Conditions	14.0	m/s
Measured Volumetric Flow rate at Actual Conditions	12418	m³/hr

Performance Characteristics & Source of Value	Units	Values	Requirement	Compliant
Uncertainty of Local Gas Velocity Determination				
Uncertainty of pitot tube coefficient	-	0.010		
Uncertainty of mean local dynamic pressures	-	1.21		
Factor loading, function of the number of measurements.	3 readings	0.591	minimum 3	Yes
Range of measurment device	ра	1000		
Resolution	ра	1.00		
Calibration uncertainty	ра	22.94	<1% of Value or 20 Pa whichever is greater	Yes
Drift	% range	0.10		
Linearity	% range	0.06	<2% of value	Yes
Uncertainty of gas density determination				
Uncertainty of molar mass determination	kg/mol	0.00003		
Uncertainty of temperature measurement	К	1.60	<1% of value	Yes
Uncertainty of absolute pressure in the duct	ра	507		
Uncertainty associated with the estimate of density	-	0.007		
Uncertainty associated with the measurement of local velocity	-	0.0001		
Uncertainty associated with the measurement of mean velocity	-	0.0001		

Measurement Uncertainty - Velocity	m/s
Combined uncertainty	0.17
Expanded uncertainty at a 95% Confidence Interval	0.33

Note - The expanded uncertainty uses a coverage factor of k = 2.

Expanded Measurement Uncertainty of Velocity at a 95% Confidence Interval	%
Expressed as a % of the Measured Velocity	1.2
Expanded uncertainty at a 95% Confidence Interval	2.4

Measurement Uncertainty Volumetric Flow Rate	m³/hr
Combined uncertainty	324
Expanded uncertainty at a 95% Confidence Interval	635

Note - The expanded uncertainty uses a coverage factor of k = 2.

Expanded Measurement Uncertainty of Volumetric Flow Rate at a 95% Confidence Interval	%
Expressed as a % of the Measured Volumetric Flow Rate	2.6
Expanded uncertainty at a 95% Confidence Interval	5.1

Reference – SOCOTEC Technical Procedure AE150 Estimation of Uncertainty of Measurement

END OF REPORT

Thank you for choosing SOCOTEC for your environmental monitoring needs. We hope our services have met your requirements and that you are fully satisfied with your experience of working with us, we really do value your custom and would welcome your feedback. We would appreciate it if you could take a moment to complete a short online questionnaire so that we can improve our operations and address any areas that have not met with your expectations, by clicking on the following

https://www.surveymonkey.co.uk/r/CAE customer feedback weblink