

AIR & EMISSIONS TESTING GROUP

52 Offerton Industrial Estate, Hempshaw Lane, Stockport, SK2 5TJ. Tel: 0161 477 3004 Fax: 0161 480 4642 Mobile: 07973 319576 (24 Hours) Email: james.bealing@scientifics.com

Stack Emissions Testing Report

Total Particulate Matter	
Volatile Organic Compounds	

VIP Polymers Ltd

Huntingdon

Air Tech Environmental Consultancy Services

16 Sacomat

Sampling Date

26th September 2006

Report by

Paul Adamczyk

Job Number

LAB 06679

Contents

	Page
Title Page	1
Introduction	2
Emissions Summary	3
Written Summary	3
Total Particulate Matter Summary	4
36 Summary	4
Volatile Organic Compounds Emission Profile	5
Volatile Organic Compounds Emission Data	5
Volatile Organic Compounds Sampling Methodology	6
Calculations - Run 1	7
Calculations - Run 2	8
Total Particulate Matter Sampling Methodology	9
On Site Isokinetic Data Sheet	11
Stack Diagram	12
Plant Layout	12
Quality Assurance Checklist	13
Environmental Monitoring Team	14
Deviations from BS 3405 : 1983	15
Conclusion	15

Introduction

VIP Polymers Ltd operates a rubber products manufacturing process process at Huntingdon which is subject to Local Air Pollution Control by Huntingdon District Council under the Pollution Prevention and Control Regulations 2000.

Scientifics Limited, working in partnership with Air Tech ECS, were commissioned by VIP Polymers Ltd to carry out stack emissions testing to determine the release of total particulate matter and volatile organic compounds from the following Plant under normal operating conditions.

Company	VIP Polymers Ltd
Site	Huntingdon
Stack	16 Sacomat
Sampling Date	26th September 2006
Time Test Started	18:27
Time Test Ended	19:14
Operating Conditions	Normal
Materials Processed	Rubber
Plume Appearance	None Visible

Throughout sampling, the operating conditions were maintained as above. Any deviations from BS 3405 : 1983 are noted in the conclusion.

Emissions Summary

Company Site Stack Sampling Date VIP Polymers Ltd Huntingdon 16 Sacomat 26th September 2006

Parameter	Units	Result	Limit	Outcome
Total Particulate Matter	mg/m ³	0.04	10	Passed
Particulate Emission Rate	g/hr	0.0001	-	-
Volatile Organic Compounds	mg/m ³	0.91	50	Passed
VOC Emission Rate	g/hr	3.3	-	-
Stack Gas Temperature	°C	33	-	-
Stack Gas Volumetric Flow Rate (Actual)	m ³ /hr	4139	-	-
Stack Gas Volumetric Flow Rate (STP)	m ³ /hr	3640	-	-
Stack Gas Velocity	m/s	11.9	-	-

All results are mean values, with particulate concentrations expressed at reference conditions.

Reference conditions are 273K, 101.3 kPa, without correction for water vapour content.

Written Summary

Total Particulato Mattor Passod		
	Total Particulate Matter	Passed

Two particulate tests were performed during continuous operating conditions. The mean sampling time was 20 minutes. The mean particulate concentration was 0.04 mg/m³ at reference conditions. This value is below the specified emission limit of 10 mg/m³. This is below the specified emission limit.

The tests were performed following the main procedural requirements of BS 3405 : 1983 using a Ströhlein STE 4 isokinetic particulate sampling train.

Volatile Organic Compounds	Passed

VOC (as Carbon) concentrations were measured continuously over a 30 minute period, with average values being recorded at 1 minute intervals. The mean VOC (as Carbon) concentration was 0.91 mg/m^3 .

The sampling was performed in accordance with the main procedural requirements of BS 12619 : 1999 using a heated sampling line and a Signal 3010 MINIFID portable VOC analyser, with detection by FID calibrated against 74.6 ppm propane certified span gas.

Total Particulate Matter Summary

Sample	Sampling Times	Concentration	Limit
Run 1	18:27 - 18:47	0.02 mg/m ³	10 mg/m ³
Run 2	12:35 - 12:55	0.05 mg/m ³	10 mg/m ³
Mean Particulate Concentration		0.04 mg/m ³	10 mg/m ³

Sample	Sampling Times	Particulate Emission Rate	Ratio of Particulate Emission Rates
Run 1	18:27 - 18:47	0.00002 g/s	-
Run 2	12:35 - 12:55	0.00005 g/s	-
Mean Particulate Emission Rate		0.00003 g/s	3.0 : 1

Volatile Organic Compounds Summary

Sampling Times	Concentration	Limit	Emission Rate	Limit
	(mg/m ³)	(mg/m ³)	(g/hr)	(g/hr)
18:18 - 18:48	0.91	50	3.3	-

Reference conditions are 273K, 101.3kPa, without correction for water vapour content.

Volatile Organic Compounds Emissions Profile

Volatile Organic Compounds Emissions Data

Time	VOC	VOC	Time	VOC	VOC
	ppm	mg/m ³		ppm	mg/m ³
18:18	0.51	0.82	18:34	0.62	1.00
18:19	0.67	1.08	18:35	0.46	0.74
18:20	0.50	0.80	18:36	0.61	0.98
18:21	0.54	0.86	18:37	0.47	0.76
18:22	0.69	1.10	18:38	0.50	0.80
18:23	0.49	0.78	18:39	0.51	0.82
18:24	0.70	1.12	18:40	0.50	0.80
18:25	0.65	1.04	18:41	0.44	0.70
18:26	0.74	1.18	18:42	0.40	0.64
18:27	0.64	1.02	18:43	0.41	0.66
18:28	0.79	1.26	18:44	0.41	0.66
18:29	0.49	0.78	18:45	0.71	1.14
18:30	0.71	1.14	18:46	0.42	0.68
18:31	0.57	0.92	18:47	0.70	1.12
18:32	0.57	0.92	18:48	0.52	0.84
18:33	0.55	0.88	Mean	0.56	0.91

Reference conditions are 273K, 101.3 kPa, without correction for water vapour content.

Volatile Organic Compounds Sampling Methodology

The Signal 3010 MINIFID Portable Heated Total Hydrocarbon Analyser uses Flame Ionisation to detect total organic carbon in a gas stream.

Checks Carried Out before Arrival On Site

The FID analyser is set up and is tested. The following are checked; the furnace and sample line temperatures, the zero and span gas calibration and the operation of the data logger.

On Site Sampling Procedure

The FID and sample line are switched on and allowed to reach operational temperature. The analyser will take 20 minutes to reach its operational temperature of 180°C. The sample line is heated to approximately 180°C to avoid VOCs condensing in the line. When the components have reached the correct operating temperature the fuel and span gas valves are opened and the FID is ignited.

The FID will take about 20 minutes before it stabilises and gives a zero ppm reading. The zero gas is fed into the FID and the zero set. The span gas is fed into the FID and the instrument adjusted to read the certified span gas value. The zero gas is fed into the FID once more to check that the reading returns to zero, if it does not, then these steps are repeated.

The probe, with a particulate filter, is then inserted into the stack, and the data logger activated.

The data logger can be programmed to log results over a 1, 5, 10 etc minute period. The results displayed and logged are the volume concentration of propane in ppm, which are converted to mg/m³ by the following calculations:

 $C_{m} = C_{v} \qquad \frac{36}{22.4}$

where	C _m	is the TOC concentration in mg/m ³ (273 K; 101300 Pa)
	C _v	is the volume concentration of propane in ppm (by volume)

Calculations - Run 1

1. Stack Gas Velocity (V)

V =	0.075 x Cp x √∆P x √T
V =	Velocity (m/s)
Cp =	Pitot Tube Calibration Coefficient
$\Delta P =$	Mean Differential Pressure (Pa)
T =	Mean Temperature (K)

2. Stack Gas Volumetric Flow Rate (Q)

Stack Gas Velocity (V) Stack Diameter (D)	11.84 m/s 0.35 m
Stack Area (A)	0.10 m ²
Stack Temperature (T)	306.00 K
Atmospheric Pressure (PA)	99.80 kPa
Static Pressure (Pst)	0.06 kPa
Standard Barometric Pressure (PB)	101.30 kPa

$Q_{(STP)} =$	<u>273</u> x	(<u>P_A + P_St</u>) x V x A	$Q_{(actual)} =$	V x A	
	Т	Рв			

 $Q_{(STP)} = 1.00 \text{ m}^3/\text{s}$

$Q_{(actual)} = 1.14 \text{ m}^3/\text{s}$

3. Particulate Mass Emission Rate (M)

No. of Sampling Points (n)		4		
Duration at each point (s)		300 s		
Nozzle area (a)		50.27 mm ²		
Particulate mass (m)		0.00001 g		
Stack Area (A)		0.10 m ²		
$M = \frac{(A \times m)}{(n \times a \times s)} \times 10^{6}$	=	1.6E-05 g/s		

M = 0.0000 g/s

4. Particulate Concentration (C) at 273K, 101.3kPa

C =	: (M /	Q _(STP))	х	1000
-----	--------	----------------------	---	------

 $C = 0.02 \text{ mg/m}^3$

1. Stack Gas Velocity (V)

V =	Velocity	(m/s)
-----	----------	-------

Cp = Pitot Tube Calibration Coefficient

 $\Delta P =$ Mean Differential Pressure (Pa)

T = Mean Temperature (K)

2. Stack Gas Volumetric Flow Rate (Q)

Stack Gas Velocity (V)	12.05 m/s
Stack Diameter (D)	0.35 m
Stack Area (A)	0.10 m ²
Stack Temperature (T)	306.00 K
Atmospheric Pressure (PA)	99.80 kPa
Static Pressure (Pst)	0.06 kPa
Standard Barometric Pressure (PB)	101.30 kPa

Q _(STP) =	<u>273</u>	х	(<u>PA + P</u> St) x V x A	$Q_{(actual)} =$	VxA	
	Т		Рв			

$Q_{(STP)} =$	1.02	m³/s	$\mathbf{Q}_{(actual)} =$	1.16	m³/s
(011)			(uotuul)		

3. Particulate Mass Emission Rate (M)

No. of Sampling Points (n)		4
Duration at each point (s)		300 s
Nozzle area (a)		50.27 mm ²
Particulate mass (m)		0.0000 g
Stack Area (A)		0.10 m ²
$M = (A \times m) \times 10^{6}$ (n x a x s)	=	4.8E-05 g/s

M = 0.000 g/s

4. Particulate Concentration (C) at 273K, 101.3 kPa

 $C = (M / Q_{(STP)}) \times 1000$

 $C = 0.05 \text{ mg/m}^3$

Total Particulate Matter Sampling Methodology

Job Preparation

A pre-site survey must first be undertaken to obtain the following information. Client details (full address & contact names), description of stack (name & location), sampling platform / access (Permanent - platform of adequate size & load capability, kick boards, hand & middle rails, free from debris, good drainage, fixed ladders with hoops and chain. Temporary - adequate size & load capability, stabilising legs, valid inspection tag, kick boards, hand & middle rails. Both types of platform must have a secure anchorage point to fix pulley system) hazards (dust, noise, temperature, gases/vapours, vibration, light, moving machinery, electricity etc) power supply and location, additional PPE required (high temperature gloves/overalls, PPE).

The Strohlein STE 4, isokinetic particulate measurement equipment, is fully inspected prior to use and its calibration status observed. This includes:

Pitot Tube - All pitot tubes are physically checked for damage, paying particular attention to the inlet holes. All dirt and blockages are removed.

Micromanometer - Digital differential pressure meters are used capable of measuring pressure in the range 0 Pa to 2250 Pa with a sensitivity of ± 1 Pa. These instruments are checked for obvious physical damage, battery life tested and calibrated status observed.

Thermocouple - Temperature is measured using k type thermocouples. Each thermocouple is inspected for obvious damage and its calibration status observed. Digital temperature meters are used in conjunction with K type thermocouples. These are also checked for obvious physical damage and their battery life tested.

Nozzles - All nozzles used have been constructed in accordance BS 3405 : 1983, section 5.3.2. Each nozzle is physically checked for damage and removed if necessary. The nozzle calibration status is observed.

Flowmeter - The flowmeter is checked for blockages and obvious physical damage. Its calibration status is also observed.

Balance - A Mettler Toledo balance is used to weigh filters. The balance is positioned on a solid base located in a specially built weighing room. The balance is serviced and calibrated routinely each year by the manufacturer and also checked daily with in-house check weights.

Rope Kit - All lifting tackle i.e. rope, pulleys, karabiners, brakes and slings are physically checked for cuts and contamination.

Should the calibration certainty of any of the above equipment be in question, that item of equipment must be recalibrated and replaced if necessary.

Filter Selection and Preparation

Stack conditions can vary greatly for temperature, moisture, acidity, low and heavy particulate loading. Following the pre-site survey, the stack gas condition should be known and the appropriate filter can be selected and prepared as described below.

Filter mediums - glass wool, quartz wool, Gelman Sciences A/C Glass Fibre filter papers, Gelman Sciences Low Ash PVC membrane filter papers, Schleicher & Schuell Glass Fibre Thimbles or Schleicher & Schuell Quartz Thimbles.

Filters are prepared by drying in an oven at 160°C for a period of one hour and then placed to cool in a dessicator. The filters are weighed accurately on a 4-figure balance and then placed in clean individual petri dishes and transported to site in a filter storage box. Spare filters are also prepared to allow for accidents and to obtain blank values.

Sampling Procedure

Suitability of Sampling Location

Before sampling can commence, a preliminary velocity and temperature survey must be undertaken along the two sampling lines at ten equally spaced points excluding the region within 5% of the effective flue diameter from the wall. The stack diameter is measured using a steel rod. If the ratio of the highest to lowest dynamic pressures exceeds 9:1 or if the ratio of the highest to lowest gas velocities exceeds 3:1, another sampling plane should be used. Sampling is undertaken from either four or eight sampling points.

Total Particulate Matter Sampling Methodology

Four sampling points are used when the ratio of the highest to lowest dynamic pressures is less than 4:1 and eight sampling points when the ratio of highest to lowest dynamic pressures exceeds 4:1 but less than 9:1 or the stack area exceeds 2.5 m^2 . Temperature is also measured at ten equally spaced points along the sampling lines and an average temperature calculated. Should the temperature at any of the sampling points differ by more than + 10% from that of the average temperature, then that point must not be used.

The required number of sampling points can now be calculated using the following:

- 4 point sampling, circular stacks: 0.15 x D and 0.85 x D.
- 4 point sampling, square stacks: 0.25 x D and 0.75 x D.
- 8 point sampling, circular stacks: 0.065 x D, 0.25 x D, 0.75 x D and 0.935 x D.
- 8 point sampling, square stacks: 0.125 x D, 0.375 x D, 0.625 x D and 0.875 x D.

Leak Checks

A leak check should be undertaken before and after the iso-kinetic sampling is carried out. This is to make sure that all suction is taken at the sampling nozzle.

Sampling

Once the iso-kinetic sampling flow rates have been calculated, the probe is inserted into the stack at 90° to the stack gas flow, as not to impinge any particulate matter on to the filter media prior to sampling. Allow the filter head and probe to attain the stack gas temperature. Start the suction device, and set the flowmeter to the correct suction rate for isokinetic sampling. At the same time turn the nozzle into flow and start the timing device.

Duration of Sampling Time

Duration of sampling time depends on :

- (a) ensuring adequate quantities of particulate matter on the filter for weighing (> 0.3 % of the filter weight).
- (b) whether cumulative or incremental sampling is undertaken.
- (c) the number of sampling points i.e. either 4 or 8 point sampling.
- (d) the continuity of plant operation.

Cumulative Sampling

After the first sample is taken from the first sampling position the control valve is closed simultaneously turning the sampling probe 90° to the stack gas flow, moving the probe to the next sample position. This process should be repeated until all the sample points have been used once.

Repeat Velocity and Temperature Readings

At each of the sampling points repeat the readings for the stack gas flow rate and stack gas temperatures. Calculate the new iso-kinetic sampling flow rates. If the stack gas velocity is more than \pm 5% from the initial readings the test result shall not be regarded as having the required accuracy. The new temperature reading should not exceed the permitted range calculated in the preliminary survey. i.e. it should be within \pm 10% of the original mean temperature.

N.B. The filter head should be cleaned and the particulate matter added to the particulate matter on the filter.

The Sampling procedure should be repeated to obtain a duplicate sample, the ratio of the two particulate emission rates should not exceed 1.5:1.

Weighing of Sample

The used filter should be placed in an oven at 180° C and dried thoroughly, cooled and equilibrated in a desiccator and weighed as quickly as possible so as to avoid any errors due to moisture absorption onto the filter. The gross weight of the filter should be measured to within <u>+</u> 0.1 mg. The filter weight and any residual particulate matter from the filter head can then be used in the final report to calculate the particulate concentration.

Preliminary	Preliminary Stack Survey		Line A	Sampling Line B	
Traverse	Distance in	Dynamic	Temperature	Dynamic	Temperature
Point	Stack (m)	Pressure (Pa)	(°C)	Pressure (Pa)	(°C)
1	0.02	95	33	-	-
2	0.05	118	33	-	-
3	0.09	115	33	-	-
4	0.12	122	33	-	-
5	0.16	127	33	-	-
6	0.19	128	33	-	-
7	0.23	159	33	-	-
8	0.26	121	33	-	-
9	0.30	144	33	-	-
10	0.33	123	33	-	-
Mean	-	125	33	-	-

On Site Isokinetic Data Sheet

Lowest Dynamic Pressure (any line)95Highest Dynamic Pressure (any line)159

95 Ratio of Above159 (Highest permitted ratio 9:1)

1.67:1

and

Temperature Range permitted for any point is between 2

64

Run 1		Sampling Tim	e (mins)	20	Nozzle size us	ed (mm)	8.0
Sampling	Dynamic F	Pressure (Pa)	Temperatu	Temperature (°C) Velocity		′ (m/s)	Flowmeter
Point	Initial	Final	Initial	Final	Initial	Final	set at (m ³ /hr)
1	95	110	33	33	10.74	11.56	1.88
2	115	112	33	33	11.82	11.66	2.07
3	121	118	33	33	12.12	11.97	2.12
4	123	132	33	33	12.22	12.66	2.14
Mean	114	118	33	33	11.73	11.96	2.05
Difference be	etween Initial	Velocity and Fir	nal Velocity =	1.98	8 %	(Limit permitted	l is <u>+</u> 5%)
Start Filter W	/eight =	0.1199	g Samp	le Weight =		0.00001	g
End Filter W	eight =	0.1199	g Samp	le as % of Filte	r Weight =	0.01	%

Run 2		Sampling Tim	e (mins)	20	Nozzle size us	sed (mm)	8.0
Sampling	Dynamic I	Pressure (Pa)	Temperatu	re (°C)	Velocity	/ (m/s)	Flowmeter
Point	Initial	Final	Initial	Final	Initial	Final	set at (m ³ /hr)
1	110	120	33	33	11.56	12.07	2.03
2	112	110	33	33	11.66	11.56	2.04
3	118	126	33	33	11.97	12.37	2.10
4	132	130	33	33	12.66	12.57	2.22
Mean	118	122	33	33	11.96	12.14	2.10
Difference be	etween Initial	Velocity and Fir	nal Velocity =	1.4	7 %	(Limit permitted	l is <u>+</u> 5%)
Start Filter W	/eight =	0.1192	g Sample	e Weight =		0.00003	3 g
End Filter We	eight =	0.1192	g Sample	e as % of Filte	r Weight =	0.03	3 %

Stack Diagram

Stack Diameter (D) =	0.35 m
Stack Area (A) =	0.10 m ²

Sampling	Distance as	Distance
Point	a % of (D)	in m
1	6.5	0.02
2	25.0	0.09
3	75.0	0.26
4	93.5	0.33

Plant Layout

Quality Assurance Checklist

Velocity Measurements:

Were water droplets present ?	No
Direction of gas flow within $\pm 20^{\circ}$ of stack axis.	Yes
Dynamic pressures > 5 Pa at all sampling points.	Yes
Ratio of highest to lowest dynamic pressures < 9 : 1.	Yes
Sampling:	
Sampling plane was correctly positioned.	Yes
Area of sampling apparatus was < 10% of stack area.	Yes
Sampling was from centres of equal areas.	Yes
Sampling at each point not less than 3 minutes.	Yes
Nozzle was facing directly upstream to within <u>+</u> 10°.	Yes
Leak check performed before and after each run and passed.	Yes
Sample Handling:	
Minimum weight of samples collected > 0.3% of filter weights.	No
Samples achieved stable weights.	Yes
Particulate samples stored for 3 months.	Yes
QA Procedures:	
Isokinetic data sheet completed and signed off by Team Leader.	Yes
Report saved electronically onto Scientifics server.	Yes
Raw data and hard copy of report filed together.	Yes

Environmental Monitoring Team

Environmental Team Leader	Paul Adamczyk BSc (Hons) Fuel and Combustior MSc Environmental Pollution Con MCERTS Level 2, Technical Endo	n Science trol prsement 1 & 4 - MM 04 547
Environmental Technician	Robert Adamczyk BSc Environmental Science MCERTS Trainee - MM06 721	
Report by	Paul Adamczyk Level 2 Team Leader	
Checked and Authorised By	Mark Allison	Print Name

_	7th November 2006	Dated
	Team Leader	Business Title

Conclusion

The results of this test demonstrate that under normal operating conditions, this Plant is being operated in compliance with the total particulate matter and volatile organic compounds emission limits specified in PG 6/28 (04).

Good housekeeping and maintenance of the ducting and associated Plant should be continued in order to maintain this level of Plant performance.

A regular programme of stack emissions testing in accordance with the Plant's Local Air Pollution Control Authorisation will be required to demonstrate continued compliance.

Deviations from BS 3405 : 1983

Less than 0.3% of the filter weight was collected during both sample runs. This was due to the very low level of particulate emissions from the Plant.

AIR & EMISSIONS TESTING GROUP

52 Offerton Industrial Estate, Hempshaw Lane, Stockport, SK2 5TJ. Tel: 0161 477 3004 Fax: 0161 480 4642 Mobile: 07973 319576 (24 Hours) Email: james.bealing@scientifics.com

Stack Emissions Testing Report

Total Pa	rticulate	Matt	er
Volatile	Organic	Com	pounds

VIP Polymers Ltd

Huntingdon

Air Tech Environmental Consultancy Services

24 Desma 10 Booth

Sampling Date

26th September 2006

Report by

Paul Adamczyk

Job Number

LAB 06679

Contents

	Page
Title Page	1
Introduction	2
Emissions Summary	3
Written Summary	3
Total Particulate Matter Summary	4
Volatile Organic Compounds Summary	4
Volatile Organic Compounds Emission Profile	5
Volatile Organic Compounds Emission Data	5
Volatile Organic Compounds Sampling Methodology	6
Calculations - Run 1	7
Calculations - Run 2	8
Total Particulate Matter Sampling Methodology	9
On Site Isokinetic Data Sheet	11
Stack Diagram	12
Plant Layout	12
Quality Assurance Checklist	13
Environmental Monitoring Team	14
Deviations from BS 3405 : 1983	15
Conclusion	15

Introduction

VIP Polymers Ltd operates a rubber products manufacturing process process at Huntingdon which is subject to Local Air Pollution Control by Huntingdon District Council under the Pollution Prevention and Control Regulations 2000.

Scientifics Limited, working in partnership with Air Tech ECS, were commissioned by VIP Polymers Ltd to carry out stack emissions testing to determine the release of total particulate matter and volatile organic compounds from the following Plant under normal operating conditions.

VIP Polymers Ltd
Huntingdon
24 Desma 10 Booth
26th September 2006
12:38
13:23
Normal
Rubber
None Visible

Throughout sampling, the operating conditions were maintained as above. Any deviations from BS 3405 : 1983 are noted in the conclusion.

Emissions Summary

Company Site Stack Sampling Date VIP Polymers Ltd Huntingdon 24 Desma 10 Booth 26th September 2006

Parameter	Units	Result	Limit	Outcome
Total Particulate Matter	mg/m ³	0.06	10	Passed
Particulate Emission Rate	g/s	0.11	-	-
Volatile Organic Compounds	mg/m ³	0.98	50	Passed
VOC Emission Rate	g/hr	1.9	-	-
Stack Gas Temperature	°C	23	-	-
Stack Gas Volumetric Flow Rate (Actual)	m ³ /hr	2081	-	-
Stack Gas Volumetric Flow Rate (STP)	m ³ /hr	1891	-	-
Stack Gas Velocity	m/s	8.2	-	-

All results are mean values, with particulate concentrations expressed at reference conditions.

Reference conditions are 273K, 101.3 kPa, without correction for water vapour content.

Written Summary

Total Particulate Matter	Passed

Two particulate tests were performed during continuous operating conditions. The mean sampling time was 20 minutes. The mean particulate concentration was 0.06 mg/m³ at reference conditions. This value is below the specified emission limit of 10 mg/m³. This is below the specified emission limit.

The tests were performed following the main procedural requirements of BS 3405 : 1983 using a Ströhlein STE 4 isokinetic particulate sampling train.

Volatile Organic Compounds	Passed
<u> </u>	

VOC (as Carbon) concentrations were measured continuously over a 30 minute period, with average values being recorded at 1 minute intervals. The mean VOC (as Carbon) concentration was 0.98 mg/m^3 .

The sampling was performed in accordance with the main procedural requirements of BS 12619 : 1999 using a heated sampling line and a Signal 3010 MINIFID portable VOC analyser, with detection by FID calibrated against 74.6 ppm propane certified span gas.

Total Particulate Matter Summary

Sample	Sampling Times	Concentration	Limit
Run 1	12:38 - 12:58	0.04 mg/m ³	10 mg/m ³
Run 2	13:03 - 13:23	0.07 mg/m ³	10 mg/m ³
Mean Particulate Concentration		0.06 mg/m ³	10 mg/m ³

Sample	Sampling Times	Particulate Emission Rate	Ratio of Particulate Emission Rates
Run 1	12:38 - 12:58	0.00002 g/s	-
Run 2	13:03 - 13:23	0.00004 g/s	-
Mean Particulate Emission Rate		0.00003 g/s	1.5 : 1

Volatile Organic Compounds Summary

Sampling Times	Concentration	Limit	Emission Rate	Limit
	(mg/m ³)	(mg/m ³)	(g/hr)	(g/hr)
12:31 - 13:01	0.98	50	1.9	-

Reference conditions are 273K, 101.3kPa, without correction for water vapour content.

Volatile Organic Compounds Emissions Profile

Volatile Organic Compounds Emissions Data

Time	VOC	VOC	Time	VOC	VOC
	ppm	mg/m ³		ppm	mg/m ³
12:31	0.64	1.02	12:47	0.44	0.70
12:32	0.44	0.70	12:48	0.41	0.66
12:33	0.45	0.72	12:49	0.77	1.24
12:34	0.65	1.04	12:50	0.72	1.16
12:35	0.62	1.00	12:51	0.75	1.20
12:36	0.59	0.94	12:52	0.57	0.92
12:37	0.56	0.90	12:53	0.59	0.94
12:38	0.74	1.18	12:54	0.47	0.76
12:39	0.87	1.40	12:55	0.87	1.40
12:40	0.84	1.34	12:56	0.70	1.12
12:41	0.59	0.94	12:57	0.56	0.90
12:42	0.56	0.90	12:58	0.37	0.60
12:43	0.57	0.92	12:59	0.41	0.66
12:44	0.89	1.42	13:00	0.36	0.58
12:45	0.66	1.06	13:01	0.69	1.10
12:46	0.54	0.86	Mean	0.61	0.98

Reference conditions are 273K, 101.3 kPa, without correction for water vapour content.

Volatile Organic Compounds Sampling Methodology

The Signal 3010 MINIFID Portable Heated Total Hydrocarbon Analyser uses Flame Ionisation to detect total organic carbon in a gas stream.

Checks Carried Out before Arrival On Site

The FID analyser is set up and is tested. The following are checked; the furnace and sample line temperatures, the zero and span gas calibration and the operation of the data logger.

On Site Sampling Procedure

The FID and sample line are switched on and allowed to reach operational temperature. The analyser will take 20 minutes to reach its operational temperature of 180°C. The sample line is heated to approximately 180°C to avoid VOCs condensing in the line. When the components have reached the correct operating temperature the fuel and span gas valves are opened and the FID is ignited.

The FID will take about 20 minutes before it stabilises and gives a zero ppm reading. The zero gas is fed into the FID and the zero set. The span gas is fed into the FID and the instrument adjusted to read the certified span gas value. The zero gas is fed into the FID once more to check that the reading returns to zero, if it does not, then these steps are repeated.

The probe, with a particulate filter, is then inserted into the stack, and the data logger activated.

The data logger can be programmed to log results over a 1, 5, 10 etc minute period. The results displayed and logged are the volume concentration of propane in ppm, which are converted to mg/m³ by the following calculations:

$C_m = C_v$	<u>36</u> 22.4	
where	C _m	is the TOC conce

is the TOC concentration in mg/m³ (273 K; 101300 Pa)

C_v is the volume concentration of propane in ppm (by volume)

Calculations - Run 1

1. Stack Gas Velocity (V)

V =	0.075 x Cp x √∆P x √T
V =	Velocity (m/s)
Cp =	Pitot Tube Calibration Coefficient
$\Delta P =$	Mean Differential Pressure (Pa)
T =	Mean Temperature (K)

2. Stack Gas Volumetric Flow Rate (Q)

8.21 m/s 0.30 m
0.07 m ²
296.00 K
99.80 kPa
0.03 kPa
101.30 kPa

Q _(STP) =	<u>273</u> x	(<u>PA + P</u> St) x V x A	$Q_{(actual)} =$	VхА	
	Т	Рв			

 $Q_{(STP)} = 0.53 \text{ m}^{3}/\text{s}$

$Q_{(actual)} = 0.58 \text{ m}^3/\text{s}$

3. Particulate Mass Emission Rate (M)

No. of Sampling Points (n)		4
Duration at each point (s)		300 s
Nozzle area (a)		50.27 mm ²
Particulate mass (m)		0.00002 g
Stack Area (A)		0.07 m ²
$M = (A x m) x 10^{6}$ (n x a x s)	=	2.3E-05 g/s

M = 0.0000 g/s

4. Particulate Concentration (C) at 273K, 101.3kPa

C =	: (M /	Q _(STP))	х	1000
-----	--------	----------------------	---	------

 $C = 0.04 \text{ mg/m}^3$

1. Stack Gas Velocity (V)

V =	0.075 x Cp x √∆P x √T
-----	-----------------------

V = Velocity (m/s)

Cp = Pitot Tube Calibration Coefficient

- $\Delta P =$ Mean Differential Pressure (Pa)
- T = Mean Temperature (K)

2. Stack Gas Volumetric Flow Rate (Q)

Stack Gas Velocity (V) Stack Diameter (D)	8.14 m/s 0.30 m
Stack Area (A)	0.07 m ²
Stack Temperature (T)	296.00 K
Atmospheric Pressure (PA)	99.80 kPa
Static Pressure (Pst)	0.03 kPa
Standard Barometric Pressure (PB)	101.30 kPa

$Q_{(STP)} =$	<u>273</u>	х	(<u>P_A + P_St</u>) x V x A	$Q_{(actual)} =$	VxA	
	Т		Рв			

=

 $Q_{(STP)} = 0.52 \text{ m}^3/\text{s}$ $Q_{(actual)} = 0.58 \text{ m}^3/\text{s}$

3. Particulate Mass Emission Rate (M)

No. of Sampling Points (n) Duration at each point (s) Nozzle area (a) Particulate mass (m) Stack Area (A)

0.0000 g 0.07 m²

3.5E-05 g/s

4 300 s

50.27 mm²

 $M = (A \times m) \times 10^{6}$ (n x a x s)

M = 0.000 g/s

4. Particulate Concentration (C) at 273K, 101.3 kPa

 $C = (M / Q_{(STP)}) \times 1000$

$C = 0.07 \text{ mg/m}^3$

Total Particulate Matter Sampling Methodology

Job Preparation

A pre-site survey must first be undertaken to obtain the following information. Client details (full address & contact names), description of stack (name & location), sampling platform / access (Permanent - platform of adequate size & load capability, kick boards, hand & middle rails, free from debris, good drainage, fixed ladders with hoops and chain. Temporary - adequate size & load capability, stabilising legs, valid inspection tag, kick boards, hand & middle rails. Both types of platform must have a secure anchorage point to fix pulley system) hazards (dust, noise, temperature, gases/vapours, vibration, light, moving machinery, electricity etc) power supply and location, additional PPE required (high temperature gloves/overalls, PPE).

The Strohlein STE 4, isokinetic particulate measurement equipment, is fully inspected prior to use and its calibration status observed. This includes:

Pitot Tube - All pitot tubes are physically checked for damage, paying particular attention to the inlet holes. All dirt and blockages are removed.

Micromanometer - Digital differential pressure meters are used capable of measuring pressure in the range 0 Pa to 2250 Pa with a sensitivity of ± 1 Pa. These instruments are checked for obvious physical damage, battery life tested and calibrated status observed.

Thermocouple - Temperature is measured using k type thermocouples. Each thermocouple is inspected for obvious damage and its calibration status observed. Digital temperature meters are used in conjunction with K type thermocouples. These are also checked for obvious physical damage and their battery life tested.

Nozzles - All nozzles used have been constructed in accordance BS 3405 : 1983, section 5.3.2. Each nozzle is physically checked for damage and removed if necessary. The nozzle calibration status is observed.

Flowmeter - The flowmeter is checked for blockages and obvious physical damage. Its calibration status is also observed.

Balance - A Mettler Toledo balance is used to weigh filters. The balance is positioned on a solid base located in a specially built weighing room. The balance is serviced and calibrated routinely each year by the manufacturer and also checked daily with in-house check weights.

Rope Kit - All lifting tackle i.e. rope, pulleys, karabiners, brakes and slings are physically checked for cuts and contamination.

Should the calibration certainty of any of the above equipment be in question, that item of equipment must be recalibrated and replaced if necessary.

Filter Selection and Preparation

Stack conditions can vary greatly for temperature, moisture, acidity, low and heavy particulate loading. Following the pre-site survey, the stack gas condition should be known and the appropriate filter can be selected and prepared as described below.

Filter mediums - glass wool, quartz wool, Gelman Sciences A/C Glass Fibre filter papers, Gelman Sciences Low Ash PVC membrane filter papers, Schleicher & Schuell Glass Fibre Thimbles or Schleicher & Schuell Quartz Thimbles.

Filters are prepared by drying in an oven at 160°C for a period of one hour and then placed to cool in a dessicator. The filters are weighed accurately on a 4-figure balance and then placed in clean individual petri dishes and transported to site in a filter storage box. Spare filters are also prepared to allow for accidents and to obtain blank values.

Sampling Procedure

Suitability of Sampling Location

Before sampling can commence, a preliminary velocity and temperature survey must be undertaken along the two sampling lines at ten equally spaced points excluding the region within 5% of the effective flue diameter from the wall. The stack diameter is measured using a steel rod. If the ratio of the highest to lowest dynamic pressures exceeds 9:1 or if the ratio of the highest to lowest gas velocities exceeds 3:1, another sampling plane should be used. Sampling is undertaken from either four or eight sampling points.

Total Particulate Matter Sampling Methodology

Four sampling points are used when the ratio of the highest to lowest dynamic pressures is less than 4:1 and eight sampling points when the ratio of highest to lowest dynamic pressures exceeds 4:1 but less than 9:1 or the stack area exceeds 2.5 m^2 . Temperature is also measured at ten equally spaced points along the sampling lines and an average temperature calculated. Should the temperature at any of the sampling points differ by more than + 10% from that of the average temperature, then that point must not be used.

The required number of sampling points can now be calculated using the following:

- 4 point sampling, circular stacks: 0.15 x D and 0.85 x D.
- 4 point sampling, square stacks: 0.25 x D and 0.75 x D.
- 8 point sampling, circular stacks: 0.065 x D, 0.25 x D, 0.75 x D and 0.935 x D.
- 8 point sampling, square stacks: 0.125 x D, 0.375 x D, 0.625 x D and 0.875 x D.

Leak Checks

A leak check should be undertaken before and after the iso-kinetic sampling is carried out. This is to make sure that all suction is taken at the sampling nozzle.

Sampling

Once the iso-kinetic sampling flow rates have been calculated, the probe is inserted into the stack at 90° to the stack gas flow, as not to impinge any particulate matter on to the filter media prior to sampling. Allow the filter head and probe to attain the stack gas temperature. Start the suction device, and set the flowmeter to the correct suction rate for isokinetic sampling. At the same time turn the nozzle into flow and start the timing device.

Duration of Sampling Time

Duration of sampling time depends on :

- (a) ensuring adequate quantities of particulate matter on the filter for weighing (> 0.3 % of the filter weight).
- (b) whether cumulative or incremental sampling is undertaken.
- (c) the number of sampling points i.e. either 4 or 8 point sampling.
- (d) the continuity of plant operation.

Cumulative Sampling

After the first sample is taken from the first sampling position the control valve is closed simultaneously turning the sampling probe 90° to the stack gas flow, moving the probe to the next sample position. This process should be repeated until all the sample points have been used once.

Repeat Velocity and Temperature Readings

At each of the sampling points repeat the readings for the stack gas flow rate and stack gas temperatures. Calculate the new iso-kinetic sampling flow rates. If the stack gas velocity is more than \pm 5% from the initial readings the test result shall not be regarded as having the required accuracy. The new temperature reading should not exceed the permitted range calculated in the preliminary survey. i.e. it should be within \pm 10% of the original mean temperature.

N.B. The filter head should be cleaned and the particulate matter added to the particulate matter on the filter.

The Sampling procedure should be repeated to obtain a duplicate sample, the ratio of the two particulate emission rates should not exceed 1.5 : 1.

Weighing of Sample

The used filter should be placed in an oven at 180° C and dried thoroughly, cooled and equilibrated in a desiccator and weighed as quickly as possible so as to avoid any errors due to moisture absorption onto the filter. The gross weight of the filter should be measured to within \pm 0.1 mg. The filter weight and any residual particulate matter from the filter head can then be used in the final report to calculate the particulate concentration.

Preliminary	Stack Survey	Sampling Line A		Sampling Line B	
Traverse	Distance in	Dynamic	Temperature	Dynamic	Temperature
Point	Stack (m)	Pressure (Pa)	(°C)	Pressure (Pa)	(°C)
1	0.02	-	-	54	23
2	0.05	-	-	58	23
3	0.08	-	-	52	23
4	0.11	-	-	60	23
5	0.14	-	-	61	23
6	0.17	-	-	64	23
7	0.20	-	-	65	23
8	0.23	-	-	68	23
9	0.26	-	-	55	23
10	0.29	-	-	52	23
Mean	-	-	-	59	23

On Site Isokinetic Data Sheet

Lowest Dynamic Pressure (any line) Highest Dynamic Pressure (any line)

52 Ratio 68 (High

Ratio of Above (Highest permitted ratio 9:1)

-7

1.31:1

53

and

Temperature Range permitted for any point is between

Sampling Time (mins) 20 Nozzle size used (mm) 8.0 Run 1 Sampling **Dynamic Pressure (Pa)** Temperature (°C) Velocity (m/s) Flowmeter Point Initial Final Initial set at (m³/hr) Final Initial Final 64 23 7.96 1.44 1 54 23 8.67 2 52 53 23 23 7.82 7.89 1.42 3 68 57 23 23 8.94 8.18 1.62 4 7.82 8.40 1.42 52 60 23 23 Mean 57 59 23 23 8.13 8.29 1.47 Difference between Initial Velocity and Final Velocity = 1.83 % (Limit permitted is + 5%)

Start Filter Weight = End Filter Weight = 0.1244 g Sam 0.1244 g Sam

Sample Weight = Sample as % of Filter Weight = 0.00002 g 0.02 %

Run 2		Sampling Time (mins)		20	Nozzle size used (mm)		8.0
Sampling	Dynamic P	Oynamic Pressure (Pa)		Temperature (°C)		Velocity (m/s)	
Point	Initial	Final	Initial	Final	Initial	Final	set at (m ³ /hr)
1	64	60	23	23	8.67	8.40	1.57
2	53	51	23	23	7.89	7.74	1.43
3	57	50	23	23	8.18	7.66	1.48
4	60	57	23	23	8.40	8.18	1.52
Mean	59	55	23	23	8.29	8.00	1.50
Difference between Initial Velocity and Fina			al Velocity = -3.62 %		%	(Limit permitted is <u>+</u> 5%)	
Start Filter Weight = 0.1192		g Sample	s Sample Weight =		0.00003	g	
End Filter Weight =		0.1192	g Sample as % of Filter W		Weight = 0.03 %		%

Stack Diagram

Stack Diameter (D) =	0.30 m
Stack Area (A) =	0.07 m ²

Sampling	Distance as	Distance	
Point	a % of (D)	in m	
1	6.5	0.02	
2	25.0	0.08	
3	75.0	0.23	
4	93.5	0.28	

Plant Layout

Quality Assurance Checklist

Velocity Measurements:

Were water droplets present ?	No
Direction of gas flow within $\pm 20^{\circ}$ of stack axis.	Yes
Dynamic pressures > 5 Pa at all sampling points.	Yes
Ratio of highest to lowest dynamic pressures < 9 : 1.	Yes
Sampling:	
Sampling plane was correctly positioned.	Yes
Area of sampling apparatus was < 10% of stack area.	Yes
Sampling was from centres of equal areas.	Yes
Sampling at each point not less than 3 minutes.	Yes
Nozzle was facing directly upstream to within <u>+</u> 10°.	Yes
Leak check performed before and after each run and passed.	Yes
Sample Handling:	
Minimum weight of samples collected > 0.3% of filter weights.	No
Samples achieved stable weights.	Yes
Particulate samples stored for 3 months.	Yes
QA Procedures:	
Isokinetic data sheet completed and signed off by Team Leader.	Yes
Report saved electronically onto Scientifics server.	Yes
Raw data and hard copy of report filed together.	Yes

Environmental Monitoring Team

Environmental Team Leader	Paul Adamczyk BSc (Hons) Fuel and Combustio MSc Environmental Pollution Cor MCERTS Level 2, Technical End	n Science htrol orsement 1 & 4 - MM 04 547
Environmental Technician	Robert Adamczyk BSc Environmental Science MCERTS Trainee - MM06 721	
Report by	Paul Adamczyk Level 2 Team Leader	
Checked and Authorised By	Mark Allison	Print Name

8th November 2006 Dated Team Leader Business Title

Conclusion

The results of this test demonstrate that under normal operating conditions, this Plant is being operated in compliance with the total particulate matter and volatile organic compounds emission limits specified in PG 6/28 (04).

Good housekeeping and maintenance of the ducting and associated Plant should be continued in order to maintain this level of Plant performance.

A regular programme of stack emissions testing in accordance with the Plant's Local Air Pollution Control Authorisation will be required to demonstrate continued compliance.

Deviations from BS 3405 : 1983

Less than 0.3% of the filter weight was collected during both sample runs. This was due to the very low level of particulate emissions from the Plant.

AIR & EMISSIONS TESTING GROUP

52 Offerton Industrial Estate, Hempshaw Lane, Stockport, SK2 5TJ. Tel: 0161 477 3004 Fax: 0161 480 4642 Mobile: 07973 319576 (24 Hours) Email: james.bealing@scientifics.com

Stack Emissions Testing Report

Total Pa	rticulate	Matt	er
Volatile	Organic	Com	pounds

VIP Polymers Ltd

Huntingdon

Air Tech Environmental Consultancy Services

2 Booth MIR 7

Sampling Date

26th September 2006

Report by

Paul Adamczyk

Job Number

LAB 06679

Contents

	Page
Title Page	1
Introduction	2
Emissions Summary	3
Written Summary	3
Total Particulate Matter Summary	4
36 Summary	4
Volatile Organic Compounds Emission Profile	5
Volatile Organic Compounds Emission Data	5
Volatile Organic Compounds Sampling Methodology	6
Calculations - Run 1	7
Calculations - Run 2	8
Total Particulate Matter Sampling Methodology	9
On Site Isokinetic Data Sheet	11
Stack Diagram	12
Plant Layout	12
Quality Assurance Checklist	13
Environmental Monitoring Team	14
Deviations from BS 3405 : 1983	15
Conclusion	15

Introduction

VIP Polymers Ltd operates a rubber products manufacturing process process at Huntingdon which is subject to Local Air Pollution Control by Huntingdon District Council under the Pollution Prevention and Control Regulations 2000.

Scientifics Limited, working in partnership with Air Tech ECS, were commissioned by VIP Polymers Ltd to carry out stack emissions testing to determine the release of total particulate matter and volatile organic compounds from the following Plant under normal operating conditions.

inadon
ngaon
oth MIR 7
September 2006
6
)
nal
ber
e Visible

Throughout sampling, the operating conditions were maintained as above. Any deviations from BS 3405 : 1983 are noted in the conclusion.

Emissions Summary

Company Site Stack Sampling Date VIP Polymers Ltd Huntingdon 2 Booth MIR 7 26th September 2006

Parameter	Units	Result	Limit	Outcome
Total Particulate Matter	mg/m ³	0.04	10	Passed
Particulate Emission Rate	g/hr	0.0001	-	-
Volatile Organic Compounds	mg/m ³	1.2	50	Passed
VOC Emission Rate	g/hr	3.8	-	-
Stack Gas Temperature	°C	26	-	-
Stack Gas Volumetric Flow Rate (Actual)	m ³ /hr	3631	-	-
Stack Gas Volumetric Flow Rate (STP)	m ³ /hr	3267	-	-
Stack Gas Velocity	m/s	11.1	-	-

All results are mean values, with particulate concentrations expressed at reference conditions.

Reference conditions are 273K, 101.3 kPa, without correction for water vapour content.

Written Summary

Total Particulato Mattor Passod		
	Total Particulate Matter	Passed

Two particulate tests were performed during continuous operating conditions. The mean sampling time was 20 minutes. The mean particulate concentration was 0.04 mg/m³ at reference conditions. This value is below the specified emission limit of 10 mg/m³. This is below the specified emission limit.

The tests were performed following the main procedural requirements of BS 3405 : 1983 using a Ströhlein STE 4 isokinetic particulate sampling train.

Valatila Organia Compoundo	Dessed
volatile Organic Compounds	Passed

VOC (as Carbon) concentrations were measured continuously over a 30 minute period, with average values being recorded at 1 minute intervals. The mean VOC (as Carbon) concentration was 1.2 mg/m^3 .

The sampling was performed in accordance with the main procedural requirements of BS 12619 : 1999 using a heated sampling line and a Signal 3010 MINIFID portable VOC analyser, with detection by FID calibrated against 74.6 ppm propane certified span gas.

Total Particulate Matter Summary

Sample	Sampling Times	Concentration	Limit
Run 1	17:26 - 17:46	0.02 mg/m ³	10 mg/m ³
Run 2 17:50 - 18:10		0.05 mg/m ³	10 mg/m ³
Mean Particulate Con	centration	0.04 mg/m ³	10 mg/m ³

Sample	Sampling Times	Particulate Emission Rate	Ratio of Particulate Emission Rates
Run 1	17:26 - 17:46	0.00002 g/s	-
Run 2	17:50 - 18:10	0.00005 g/s	-
Mean Particulate Emis	sion Rate	0.00003 g/s	3.0 : 1

Volatile Organic Compounds Summary

Sampling Times	Concentration Limit		Emission Rate	Limit
	(mg/m³)	(mg/m ³)	(g/hr)	(g/hr)
17:35 - 18:05	1.2	50	3.8	-

Reference conditions are 273K, 101.3kPa, without correction for water vapour content.

Volatile Organic Compounds Emissions Profile

Volatile Organic Compounds Emissions Data

Time	VOC	VOC	Time	VOC	VOC
	ppm	mg/m ³		ppm	mg/m ³
17:35	0.87	1.4	17:51	0.80	1.3
17:36	0.65	1.0	17:52	0.81	1.3
17:37	0.62	1.0	17:53	0.77	1.2
17:38	0.19	0.3	17:54	0.94	1.5
17:39	0.75	1.2	17:55	0.82	1.3
17:40	0.69	1.1	17:56	0.89	1.4
17:41	0.79	1.3	17:57	0.70	1.1
17:42	0.61	1.0	17:58	0.86	1.4
17:43	0.69	1.1	17:59	0.72	1.2
17:44	0.69	1.1	18:00	0.77	1.2
17:45	0.62	1.0	18:01	0.77	1.2
17:46	0.79	1.3	18:02	0.50	0.8
17:47	0.69	1.1	18:03	0.74	1.2
17:48	0.95	1.5	18:04	0.75	1.2
17:49	0.65	1.0	18:05	0.71	1.1
17:50	0.89	1.4	Mean	0.73	1.2

Reference conditions are 273K, 101.3 kPa, without correction for water vapour content.

Volatile Organic Compounds Sampling Methodology

The Signal 3010 MINIFID Portable Heated Total Hydrocarbon Analyser uses Flame Ionisation to detect total organic carbon in a gas stream.

Checks Carried Out before Arrival On Site

The FID analyser is set up and is tested. The following are checked; the furnace and sample line temperatures, the zero and span gas calibration and the operation of the data logger.

On Site Sampling Procedure

The FID and sample line are switched on and allowed to reach operational temperature. The analyser will take 20 minutes to reach its operational temperature of 180°C. The sample line is heated to approximately 180°C to avoid VOCs condensing in the line. When the components have reached the correct operating temperature the fuel and span gas valves are opened and the FID is ignited.

The FID will take about 20 minutes before it stabilises and gives a zero ppm reading. The zero gas is fed into the FID and the zero set. The span gas is fed into the FID and the instrument adjusted to read the certified span gas value. The zero gas is fed into the FID once more to check that the reading returns to zero, if it does not, then these steps are repeated.

The probe, with a particulate filter, is then inserted into the stack, and the data logger activated.

The data logger can be programmed to log results over a 1, 5, 10 etc minute period. The results displayed and logged are the volume concentration of propane in ppm, which are converted to mg/m³ by the following calculations:

 $C_{m} = C_{v} \qquad \frac{36}{22.4}$

where	C _m	is the TOC concentration in mg/m ³ (273 K; 101300 Pa)	
	C _v	is the volume concentration of propane in ppm (by volume)	
Calculations - Run 1

1. Stack Gas Velocity (V)

V =	0.075 x Cp x √∆P x √T
V =	Velocity (m/s)
Cp =	Pitot Tube Calibration Coefficient
$\Delta P =$	Mean Differential Pressure (Pa)
T =	Mean Temperature (K)

2. Stack Gas Volumetric Flow Rate (Q)

Stack Gas Velocity (V) Stack Diameter (D)	11.09 m/s 0.34 m
Stack Area (A)	0.09 m ²
Stack Temperature (T)	299.00 K
Atmospheric Pressure (PA)	99.80 kPa
Static Pressure (Psi)	0.03 kPa
Standard Barometric Pressure (PB)	101.30 kPa

$Q_{(STP)} =$	<u>273</u> x	(<u>P_A + P_St</u>) x V x A	$Q_{(actual)} =$	V x A	
	Т	Рв			

 $Q_{(STP)} = 0.91 \text{ m}^{3}/\text{s}$

$Q_{(actual)} = 1.01 \text{ m}^3/\text{s}$

3. Particulate Mass Emission Rate (M)

No. of Sampling Points (n)		4
Duration at each point (s)		300 s
Nozzle area (a)		50.27 mm ²
Particulate mass (m)		0.00001 g
Stack Area (A)		0.09 m ²
$M = \frac{(A \times m)}{(n \times a \times s)} \times 10^{6}$	=	1.5E-05 g/s

M = 0.0000 g/s

4. Particulate Concentration (C) at 273K, 101.3kPa

 $C = (M / Q_{(STP)}) \times 1000$

 $C = 0.02 \text{ mg/m}^3$

1. Stack Gas Velocity (V)

$V = 0.075 \times Op \times V \Delta P \times V I$
--

V = Velocity (m/s)

Cp = Pitot Tube Calibration Coefficient

 $\Delta P =$ Mean Differential Pressure (Pa)

T = Mean Temperature (K)

2. Stack Gas Volumetric Flow Rate (Q)

3 m/s
4 m
9 m²
0 K
0 kPa
3 kPa
0 kPa

Q _(STP) =	<u>273</u>	х	(<u>PA + P</u> St) x V x A	$Q_{(actual)} =$	VxA	
	Т		Рв			

$\mathbf{w}_{(STP)} = 0.91 \text{ m/S} \mathbf{w}_{(actual)} = 1.01$	Q _(STP) =	0.91	m³/s	$\mathbf{Q}_{(actual)} =$	1.01	m³/
--	----------------------	------	------	---------------------------	------	-----

3. Particulate Mass Emission Rate (M)

No. of Sampling Points (n)		4
Duration at each point (s)		300 s
Nozzle area (a)		50.27 mm ²
Particulate mass (m)		0.0000 g
Stack Area (A)		0.09 m ²
$M = (A x m) x 10^{6}$ (n x a x s)	=	4.5E-05 g/s

M = 0.000 g/s

4. Particulate Concentration (C) at 273K, 101.3 kPa

 $C = (M / Q_{(STP)}) \times 1000$

$C = 0.05 \text{ mg/m}^3$

Total Particulate Matter Sampling Methodology

Job Preparation

A pre-site survey must first be undertaken to obtain the following information. Client details (full address & contact names), description of stack (name & location), sampling platform / access (Permanent - platform of adequate size & load capability, kick boards, hand & middle rails, free from debris, good drainage, fixed ladders with hoops and chain. Temporary - adequate size & load capability, stabilising legs, valid inspection tag, kick boards, hand & middle rails. Both types of platform must have a secure anchorage point to fix pulley system) hazards (dust, noise, temperature, gases/vapours, vibration, light, moving machinery, electricity etc) power supply and location, additional PPE required (high temperature gloves/overalls, PPE).

The Strohlein STE 4, isokinetic particulate measurement equipment, is fully inspected prior to use and its calibration status observed. This includes:

Pitot Tube - All pitot tubes are physically checked for damage, paying particular attention to the inlet holes. All dirt and blockages are removed.

Micromanometer - Digital differential pressure meters are used capable of measuring pressure in the range 0 Pa to 2250 Pa with a sensitivity of ± 1 Pa. These instruments are checked for obvious physical damage, battery life tested and calibrated status observed.

Thermocouple - Temperature is measured using k type thermocouples. Each thermocouple is inspected for obvious damage and its calibration status observed. Digital temperature meters are used in conjunction with K type thermocouples. These are also checked for obvious physical damage and their battery life tested.

Nozzles - All nozzles used have been constructed in accordance BS 3405 : 1983, section 5.3.2. Each nozzle is physically checked for damage and removed if necessary. The nozzle calibration status is observed.

Flowmeter - The flowmeter is checked for blockages and obvious physical damage. Its calibration status is also observed.

Balance - A Mettler Toledo balance is used to weigh filters. The balance is positioned on a solid base located in a specially built weighing room. The balance is serviced and calibrated routinely each year by the manufacturer and also checked daily with in-house check weights.

Rope Kit - All lifting tackle i.e. rope, pulleys, karabiners, brakes and slings are physically checked for cuts and contamination.

Should the calibration certainty of any of the above equipment be in question, that item of equipment must be recalibrated and replaced if necessary.

Filter Selection and Preparation

Stack conditions can vary greatly for temperature, moisture, acidity, low and heavy particulate loading. Following the pre-site survey, the stack gas condition should be known and the appropriate filter can be selected and prepared as described below.

Filter mediums - glass wool, quartz wool, Gelman Sciences A/C Glass Fibre filter papers, Gelman Sciences Low Ash PVC membrane filter papers, Schleicher & Schuell Glass Fibre Thimbles or Schleicher & Schuell Quartz Thimbles.

Filters are prepared by drying in an oven at 160°C for a period of one hour and then placed to cool in a dessicator. The filters are weighed accurately on a 4-figure balance and then placed in clean individual petri dishes and transported to site in a filter storage box. Spare filters are also prepared to allow for accidents and to obtain blank values.

Sampling Procedure

Suitability of Sampling Location

Before sampling can commence, a preliminary velocity and temperature survey must be undertaken along the two sampling lines at ten equally spaced points excluding the region within 5% of the effective flue diameter from the wall. The stack diameter is measured using a steel rod. If the ratio of the highest to lowest dynamic pressures exceeds 9:1 or if the ratio of the highest to lowest gas velocities exceeds 3:1, another sampling plane should be used. Sampling is undertaken from either four or eight sampling points.

Total Particulate Matter Sampling Methodology

Four sampling points are used when the ratio of the highest to lowest dynamic pressures is less than 4:1 and eight sampling points when the ratio of highest to lowest dynamic pressures exceeds 4:1 but less than 9:1 or the stack area exceeds 2.5 m^2 . Temperature is also measured at ten equally spaced points along the sampling lines and an average temperature calculated. Should the temperature at any of the sampling points differ by more than + 10% from that of the average temperature, then that point must not be used.

The required number of sampling points can now be calculated using the following:

- 4 point sampling, circular stacks: 0.15 x D and 0.85 x D.
- 4 point sampling, square stacks: 0.25 x D and 0.75 x D.
- 8 point sampling, circular stacks: 0.065 x D, 0.25 x D, 0.75 x D and 0.935 x D.
- 8 point sampling, square stacks: 0.125 x D, 0.375 x D, 0.625 x D and 0.875 x D.

Leak Checks

A leak check should be undertaken before and after the iso-kinetic sampling is carried out. This is to make sure that all suction is taken at the sampling nozzle.

Sampling

Once the iso-kinetic sampling flow rates have been calculated, the probe is inserted into the stack at 90° to the stack gas flow, as not to impinge any particulate matter on to the filter media prior to sampling. Allow the filter head and probe to attain the stack gas temperature. Start the suction device, and set the flowmeter to the correct suction rate for isokinetic sampling. At the same time turn the nozzle into flow and start the timing device.

Duration of Sampling Time

Duration of sampling time depends on :

- (a) ensuring adequate quantities of particulate matter on the filter for weighing (> 0.3 % of the filter weight).
- (b) whether cumulative or incremental sampling is undertaken.
- (c) the number of sampling points i.e. either 4 or 8 point sampling.
- (d) the continuity of plant operation.

Cumulative Sampling

After the first sample is taken from the first sampling position the control valve is closed simultaneously turning the sampling probe 90° to the stack gas flow, moving the probe to the next sample position. This process should be repeated until all the sample points have been used once.

Repeat Velocity and Temperature Readings

At each of the sampling points repeat the readings for the stack gas flow rate and stack gas temperatures. Calculate the new iso-kinetic sampling flow rates. If the stack gas velocity is more than \pm 5% from the initial readings the test result shall not be regarded as having the required accuracy. The new temperature reading should not exceed the permitted range calculated in the preliminary survey. i.e. it should be within \pm 10% of the original mean temperature.

N.B. The filter head should be cleaned and the particulate matter added to the particulate matter on the filter. The Sampling procedure should be repeated to obtain a duplicate sample, the ratio of the two particulate emission rates should not exceed 1.5 : 1.

Weighing of Sample

The used filter should be placed in an oven at 180° C and dried thoroughly, cooled and equilibrated in a desiccator and weighed as quickly as possible so as to avoid any errors due to moisture absorption onto the filter. The gross weight of the filter should be measured to within <u>+</u> 0.1 mg. The filter weight and any residual particulate matter from the filter head can then be used in the final report to calculate the particulate concentration.

On S	Site	Isok	kinetic	Data	Sheet

Preliminary Stack Survey		Sampling	J Line A	Sampling Line B		
Traverse	Distance in	Dynamic	Temperature	Dynamic	Temperature	
Point	Stack (m)	Pressure (Pa)	(°C)	Pressure (Pa)	(°C)	
1	0.02	-	-	85	26	
2	0.05	-	-	92	26	
3	0.09	-	-	118	26	
4	0.12	-	-	116	26	
5	0.15	-	-	108	26	
6	0.19	-	-	117	26	
7	0.22	-	-	111	26	
8	0.26	-	-	116	26	
9	0.29	-	-	91	26	
10	0.32	-	-	83	26	
Mean	-	-	-	104	26	

Lowest Dynamic Pressure (any line) Highest Dynamic Pressure (any line) 83 Ra 118 (Hi

Ratio of Above (Highest permitted ratio 9:1)

-4

1.42:1

56

and

Temperature Range permitted for any point is between

Run 1 Sampling Time (mins)			ne (mins)	20	Nozzle size us	ed (mm)	8.0
Sampling	Dynamic P	ressure (Pa)	Temperatu	re (°C)) Velocity (m/s)		
Point	Initial	Final	Initial	Final	Initial	Final	set at (m ³ /hr)
1	85	114	26	26	10.04	11.63	1.80
2	118	108	26	26	11.83	11.32	2.12
3	116	113	26	26	11.73	11.58	2.10
4	83	95	26	26	9.92	10.62	1.78
Mean	101	108	26	26	10.88	11.29	1.95
Difference be	etween Initial	Velocity and Fir	nal Velocity =	3.58	%	(Limit permitted	is <u>+</u> 5%)
Start Filter W End Filter We	′eight = eight =	0.1196 0.1196	g Sample g Sample	e Weight = e as % of Filter	r Weight =	0.00001 0.01	g %

Run 2		Sampling Tim	ne (mins)	20	Nozzle size us	ed (mm)	8.0
Sampling	Dynamic F	Pressure (Pa)	Temperatu	re (°C)	Velocity	(m/s)	Flowmeter
Point	Initial	Final	Initial	Final	Initial	Final	set at (m ³ /hr)
1	114	118	26	26	11.63	11.83	2.09
2	108	100	26	26	11.32	10.89	2.03
3	113	99	26	26	11.58	10.84	2.08
4	95	90	26	26	10.62	10.33	1.90
Mean	108	102	26	26	11.29	10.98	2.02
Difference between Initial Velocity and Fina		nal Velocity =	-2.85	5 %	(Limit permitted	l is <u>+</u> 5%)	
Start Filter W	/eight =	0.1192	g Sample	e Weight =		0.00003	s g

End Filter Weight =

0.1192 g

Sample as % of Filter Weight =

0.00003 g 0.03 %

Stack Diagram

Stack Diameter (D) =	0.34 m
Stack Area (A) =	0.09 m ²

Sampling	Distance as	Distance
Point	a % of (D)	in m
1	6.5	0.02
2	25.0	0.09
3	75.0	0.26
4	93.5	0.32

Plant Layout

Quality Assurance Checklist

Velocity Measurements:

Were water droplets present ?	No
Direction of gas flow within $\pm 20^{\circ}$ of stack axis.	Yes
Dynamic pressures > 5 Pa at all sampling points.	Yes
Ratio of highest to lowest dynamic pressures < 9 : 1.	Yes
Sampling:	
Sampling plane was correctly positioned.	Yes
Area of sampling apparatus was < 10% of stack area.	Yes
Sampling was from centres of equal areas.	Yes
Sampling at each point not less than 3 minutes.	Yes
Nozzle was facing directly upstream to within \pm 10°.	Yes
Leak check performed before and after each run and passed.	Yes
Sample Handling:	
Minimum weight of samples collected > 0.3% of filter weights.	No
Samples achieved stable weights.	Yes
Particulate samples stored for 3 months.	Yes
QA Procedures:	
Isokinetic data sheet completed and signed off by Team Leader.	Yes
Report saved electronically onto Scientifics server.	Yes
Raw data and hard copy of report filed together.	Yes

Environmental Monitoring Team

Environmental Team Leader	Paul Adamczyk BSc (Hons) Fuel and Combustion MSc Environmental Pollution Con MCERTS Level 2, Technical Endo	n Science trol orsement 1 & 4 - MM 04 547
Environmental Technician	Robert Adamczyk BSc Environmental Science MCERTS Trainee - MM06 721	
Report by	Paul Adamczyk Level 2 Team Leader	
Checked and Authorised By	Mark Allison	Print Name

_	7th November 2006	Dated
	Team Leader	Business Title

Conclusion

The results of this test demonstrate that under normal operating conditions, this Plant is being operated in compliance with the total particulate matter and volatile organic compounds emission limits specified in PG 6/28 (04).

Good housekeeping and maintenance of the ducting and associated Plant should be continued in order to maintain this level of Plant performance.

A regular programme of stack emissions testing in accordance with the Plant's Local Air Pollution Control Authorisation will be required to demonstrate continued compliance.

Deviations from BS 3405 : 1983

Less than 0.3% of the filter weight was collected during both sample runs. This was due to the very low level of particulate emissions from the Plant.

AIR & EMISSIONS TESTING GROUP

52 Offerton Industrial Estate, Hempshaw Lane, Stockport, SK2 5TJ. Tel: 0161 477 3004 Fax: 0161 480 4642 Mobile: 07973 319576 (24 Hours) Email: james.bealing@scientifics.com

Stack Emissions Testing Report

Total P	articulate	Matt	er
Volatile	e Organic	Com	pounds

VIP Polymers Limited

Huntingdon

Air Tech Environmental Consultancy Services

14 MIR 7

Sampling Date

26th September 2006

Report by

Paul Adamczyk

Job Number

LAB 06679

Contents

	Page
Title Page	1
Introduction	2
Emissions Summary	3
Written Summary	3
Total Particulate Matter Summary	4
Volatile Organic Compounds Summary	4
Volatile Organic Compounds Emission Profile	5
Volatile Organic Compounds Emission Data	5
Volatile Organic Compounds Sampling Methodology	6
Calculations - Run 1	7
Calculations - Run 2	8
Total Particulate Matter Sampling Methodology	9
On Site Isokinetic Data Sheet	11
Stack Diagram	12
Plant Layout	12
Quality Assurance Checklist	13
Environmental Monitoring Team	14
Deviations from BS 3405 : 1983	15
Conclusion	15

Introduction

VIP Polymers Limited operates a rubber products manufacturing process process at Huntingdon which is subject to Local Air Pollution Control by Huntingdon District Council under the Pollution Prevention and Control Regulations 2000.

Scientifics Limited, working in partnership with Air Tech ECS, were commissioned by VIP Polymers Limited to carry out stack emissions testing to determine the release of total particulate matter and volatile organic compounds from the following Plant under normal operating conditions.

Company	VIP Polymers Limited
Site	Huntingdon
Stack	14 MIR 7
Sampling Date	26th September 2006
Time Test Started	20:08
Time Test Ended	20:52
Operating Conditions	Normal
Materials Processed	Rubber
Plume Appearance	Light Fume Visible

Throughout sampling, the operating conditions were maintained as above. Any deviations from BS 3405 : 1983 are noted in the conclusion.

Emissions Summary

Company Site Stack Sampling Date VIP Polymers Limited Huntingdon 14 MIR 7 26th September 2006

Parameter	Units	Result	Limit	Outcome
Total Particulate Matter	mg/m ³	23	10	Failed
Particulate Emission Rate	g/hr	275	-	-
Volatile Organic Compounds	mg/m ³	4.3	50	Passed
VOC Emission Rate	g/hr	52	-	-
Stack Gas Temperature	°C	25	-	-
Stack Gas Volumetric Flow Rate (Actual)	m ³ /hr	13317	-	-
Stack Gas Volumetric Flow Rate (STP)	m ³ /hr	12023	-	-
Stack Gas Velocity	m/s	18.8	-	-

All results are mean values, with particulate concentrations expressed at reference conditions.

Reference conditions are 273K, 101.3 kPa, without correction for water vapour content.

Written Summary

Total Particulate Matter	Failed

Two particulate tests were performed during continuous operating conditions. The mean sampling time was 20 minutes. The mean particulate concentration was 23 mg/m³ at reference conditions. This value is above the specified emission limit of 10 mg/m³. This is below the specified emission limit.

The tests were performed following the main procedural requirements of BS 3405 : 1983 using a Ströhlein STE 4 isokinetic particulate sampling train.

Volatile Organic Compounds	Passed
relative el gaine e en pe anae	1 40004

VOC (as Carbon) concentrations were measured continuously over a 30 minute period, with average values being recorded at 1 minute intervals. The mean VOC (as Carbon) concentration was 4.3 mg/m³.

The sampling was performed in accordance with the main procedural requirements of BS 12619 : 1999 using a heated sampling line and a Signal 3010 MINIFID portable VOC analyser, with detection by FID calibrated against 74.6 ppm propane certified span gas.

Total Particulate Matter Summary

Sample	Sampling Times	Concentration	Limit
Run 1	20:08 - 20:28	35.0 mg/m ³	10 mg/m ³
Run 2	20:32 - 20:52	10.3 mg/m ³	10 mg/m ³
Mean Particulate Concentration		23.0 mg/m ³	10 mg/m^3

Sample	Sampling Times	Particulate	Ratio of Particulate
Run 1	20:08 - 20:28	0.118 g/s	-
Run 2	20:32 - 20:52	0.035 g/s	-
Mean Particulate Emission Rate		0.076 g/s	3.4 : 1

Volatile Organic Compounds Summary

Sampling Times	Concentration	Limit	Emission Rate	Limit
	(mg/m³)	(mg/m ³)	(g/hr)	(g/hr)
19:45 - 20:15	4.3	50	52	-

Reference conditions are 273K, 101.3kPa, without correction for water vapour content.

Volatile Organic Compounds Emissions Data

Time	VOC	VOC	Time	VOC	VOC
	ppm	mg/m ³		ppm	mg/m ³
19:45	1.3	2.1	20:01	3.8	6.1
19:46	1.6	2.6	20:02	4.2	6.7
19:47	1.8	2.9	20:03	4.0	6.5
19:48	2.3	3.7	20:04	3.6	5.8
19:49	3.3	5.3	20:05	3.2	5.2
19:50	3.2	5.1	20:06	2.3	3.7
19:51	3.0	4.8	20:07	2.2	3.6
19:52	2.7	4.4	20:08	2.1	3.3
19:53	2.5	4.0	20:09	2.5	4.0
19:54	2.7	4.3	20:10	2.6	4.1
19:55	2.5	4.1	20:11	2.6	4.2
19:56	2.5	4.0	20:12	2.5	4.0
19:57	2.5	4.0	20:13	2.6	4.2
19:58	2.5	4.0	20:14	2.3	3.7
19:59	2.7	4.3	20:15	2.4	3.8
20:00	2.9	4.7	Mean	2.7	4.3

Reference conditions are 273K, 101.3 kPa, without correction for water vapour content.

Volatile Organic Compounds Sampling Methodology

The Signal 3010 MINIFID Portable Heated Total Hydrocarbon Analyser uses Flame Ionisation to detect total organic carbon in a gas stream.

Checks Carried Out before Arrival On Site

The FID analyser is set up and is tested. The following are checked; the furnace and sample line temperatures, the zero and span gas calibration and the operation of the data logger.

On Site Sampling Procedure

The FID and sample line are switched on and allowed to reach operational temperature. The analyser will take 20 minutes to reach its operational temperature of 180°C. The sample line is heated to approximately 180°C to avoid VOCs condensing in the line. When the components have reached the correct operating temperature the fuel and span gas valves are opened and the FID is ignited.

The FID will take about 20 minutes before it stabilises and gives a zero ppm reading. The zero gas is fed into the FID and the zero set. The span gas is fed into the FID and the instrument adjusted to read the certified span gas value. The zero gas is fed into the FID once more to check that the reading returns to zero, if it does not, then these steps are repeated.

The probe, with a particulate filter, is then inserted into the stack, and the data logger activated.

The data logger can be programmed to log results over a 1, 5, 10 etc minute period. The results displayed and logged are the volume concentration of propane in ppm, which are converted to mg/m³ by the following calculations:

\mathbf{C}_{m}	=	$\boldsymbol{C}_{\boldsymbol{v}}$	<u>36</u>
			22.4

where	C _m	is the TOC concentration in mg/m ³ (273 K; 101300 Pa)
-------	----------------	--

 C_v is the volume concentration of propane in ppm (by volume)

Calculations - Run 1

1. Stack Gas Velocity (V)

$V = 0.075 \text{ x Cp } \text{x } \sqrt{\Delta P} \text{ x } \sqrt{T}$	
---	--

V = Velocity (m/s)

Cp = Pitot Tube Calibration Coefficient

 $\Delta \dot{P}$ = Mean Differential Pressure (Pa)

T = Mean Temperature (K)

2. Stack Gas Volumetric Flow Rate (Q)

Stack Gas Velocity (V)	18.84 m/s
Stack Diameter (D)	0.50 m
Stack Area (A)	0.20 m ²
Stack Temperature (T)	298.00 K
Atmospheric Pressure (PA)	99.80 kPa
Static Pressure (Pst)	0.03 kPa
Standard Barometric Pressure (PB)	101.30 kPa

Q _(STP) =	<u>273</u> x	(<u>PA + P</u> St) x V x A	$Q_{(actual)} =$	VхА	
	Т	Рв			

=

$Q_{(STP)} = 3.34 \text{ m}^3/\text{s}$ $Q_{(actual)} = 3.70$

3. Particulate Mass Emission Rate (M)

No. of Sampling Points (n) Duration at each point (s) Nozzle area (a) Particulate mass (m) Stack Area (A) $\begin{array}{r} 4\\ 300\ s\\ 50.27\ mm^2\\ 0.03635\ g\\ 0.20\ m^2\\ \end{array}$

1.2E-01 g/s

m³/s

 $M = (A \times m) \times 10^{6}$ (n x a x s)

M = 0.1183 g/s

4. Particulate Concentration (C) at 273K, 101.3kPa

 $C = (M / Q_{(STP)}) \times 1000$

 $C = 35.43 \text{ mg/m}^3$

1. Stack Gas Velocity (V)

$V = 0.075 \text{ x Cp } \text{x} \sqrt{\Delta P} \text{ x} \sqrt{T}$	
---	--

V = Velocity (m/s)

Cp = Pitot Tube Calibration Coefficient

- $\Delta \dot{P}$ = Mean Differential Pressure (Pa)
- T = Mean Temperature (K)

2. Stack Gas Volumetric Flow Rate (Q)

Stack Gas Velocity (V)	18.84 m/s
Stack Diameter (D)	0.50 m
Stack Area (A)	0.20 m ²
Stack Temperature (T)	298.00 K
Atmospheric Pressure (PA)	99.80 kPa
Static Pressure (Pst)	0.03 kPa
Standard Barometric Pressure (PB)	101.30 kPa

$Q_{(STP)} =$	<u>273</u>	х	(<u>P_A + P_{St}</u>) x V x A	$Q_{(actual)} =$	VхА	
	Т		Рв			

 $Q_{(STP)} = 3.34 \text{ m}^{3}/\text{s}$

 $Q_{(actual)} = 3.70 \text{ m}^3/\text{s}$

3. Particulate Mass Emission Rate (M)

No. of Sampling Points (n)		4
Duration at each point (s)		300 s
Nozzle area (a)		50.27 mm ²
Particulate mass (m)		0.0106 g
Stack Area (A)		0.20 m ²
$M = (A x m) x 10^{6}$ (n x a x s)	=	3.5E-02 g/s

M = 0.035 g/s

4. Particulate Concentration (C) at 273K, 101.3 kPa

 $C = (M / Q_{(STP)}) \times 1000$

 $C = 10.33 \text{ mg/m}^3$

Total Particulate Matter Sampling Methodology

Job Preparation

A pre-site survey must first be undertaken to obtain the following information. Client details (full address & contact names), description of stack (name & location), sampling platform / access (Permanent - platform of adequate size & load capability, kick boards, hand & middle rails, free from debris, good drainage, fixed ladders with hoops and chain. Temporary - adequate size & load capability, stabilising legs, valid inspection tag, kick boards, hand & middle rails. Both types of platform must have a secure anchorage point to fix pulley system) hazards (dust, noise, temperature, gases/vapours, vibration, light, moving machinery, electricity etc) power supply and location, additional PPE required (high temperature gloves/overalls, PPE).

The Strohlein STE 4, isokinetic particulate measurement equipment, is fully inspected prior to use and its calibration status observed. This includes:

Pitot Tube - All pitot tubes are physically checked for damage, paying particular attention to the inlet holes. All dirt and blockages are removed.

Micromanometer - Digital differential pressure meters are used capable of measuring pressure in the range 0 Pa to 2250 Pa with a sensitivity of ± 1 Pa. These instruments are checked for obvious physical damage, battery life tested and calibrated status observed.

Thermocouple - Temperature is measured using k type thermocouples. Each thermocouple is inspected for obvious damage and its calibration status observed. Digital temperature meters are used in conjunction with K type thermocouples. These are also checked for obvious physical damage and their battery life tested.

Nozzles - All nozzles used have been constructed in accordance BS 3405 : 1983, section 5.3.2. Each nozzle is physically checked for damage and removed if necessary. The nozzle calibration status is observed.

Flowmeter - The flowmeter is checked for blockages and obvious physical damage. Its calibration status is also observed.

Balance - A Mettler Toledo balance is used to weigh filters. The balance is positioned on a solid base located in a specially built weighing room. The balance is serviced and calibrated routinely each year by the manufacturer and also checked daily with in-house check weights.

Rope Kit - All lifting tackle i.e. rope, pulleys, karabiners, brakes and slings are physically checked for cuts and contamination.

Should the calibration certainty of any of the above equipment be in question, that item of equipment must be recalibrated and replaced if necessary.

Filter Selection and Preparation

Stack conditions can vary greatly for temperature, moisture, acidity, low and heavy particulate loading. Following the pre-site survey, the stack gas condition should be known and the appropriate filter can be selected and prepared as described below.

Filter mediums - glass wool, quartz wool, Gelman Sciences A/C Glass Fibre filter papers, Gelman Sciences Low Ash PVC membrane filter papers, Schleicher & Schuell Glass Fibre Thimbles or Schleicher & Schuell Quartz Thimbles.

Filters are prepared by drying in an oven at 160°C for a period of one hour and then placed to cool in a dessicator. The filters are weighed accurately on a 4-figure balance and then placed in clean individual petri dishes and transported to site in a filter storage box. Spare filters are also prepared to allow for accidents and to obtain blank values.

Sampling Procedure

Suitability of Sampling Location

Before sampling can commence, a preliminary velocity and temperature survey must be undertaken along the two sampling lines at ten equally spaced points excluding the region within 5% of the effective flue diameter from the wall. The stack diameter is measured using a steel rod. If the ratio of the highest to lowest dynamic pressures exceeds 9:1 or if the ratio of the highest to lowest gas velocities exceeds 3:1, another sampling plane should be used. Sampling is undertaken from either four or eight sampling points.

Total Particulate Matter Sampling Methodology

Four sampling points are used when the ratio of the highest to lowest dynamic pressures is less than 4:1 and eight sampling points when the ratio of highest to lowest dynamic pressures exceeds 4:1 but less than 9:1 or the stack area exceeds 2.5 m^2 . Temperature is also measured at ten equally spaced points along the sampling lines and an average temperature calculated. Should the temperature at any of the sampling points differ by more than + 10% from that of the average temperature, then that point must not be used.

The required number of sampling points can now be calculated using the following:

4 point sampling, circular stacks: 0.15 x D and 0.85 x D.

4 point sampling, square stacks: 0.25 x D and 0.75 x D.

8 point sampling, circular stacks: 0.065 x D, 0.25 x D, 0.75 x D and 0.935 x D.

8 point sampling, square stacks: 0.125 x D, 0.375 x D, 0.625 x D and 0.875 x D.

Leak Checks

A leak check should be undertaken before and after the iso-kinetic sampling is carried out. This is to make sure that all suction is taken at the sampling nozzle.

Sampling

Once the iso-kinetic sampling flow rates have been calculated, the probe is inserted into the stack at 90° to the stack gas flow, as not to impinge any particulate matter on to the filter media prior to sampling. Allow the filter head and probe to attain the stack gas temperature. Start the suction device, and set the flowmeter to the correct suction rate for isokinetic sampling. At the same time turn the nozzle into flow and start the timing device.

Duration of Sampling Time

Duration of sampling time depends on :

- (a) ensuring adequate quantities of particulate matter on the filter for weighing (> 0.3 % of the filter weight).
- (b) whether cumulative or incremental sampling is undertaken.
- (c) the number of sampling points i.e. either 4 or 8 point sampling.
- (d) the continuity of plant operation.

Cumulative Sampling

After the first sample is taken from the first sampling position the control valve is closed simultaneously turning the sampling probe 90° to the stack gas flow, moving the probe to the next sample position. This process should be repeated until all the sample points have been used once.

Repeat Velocity and Temperature Readings

At each of the sampling points repeat the readings for the stack gas flow rate and stack gas temperatures. Calculate the new iso-kinetic sampling flow rates. If the stack gas velocity is more than \pm 5% from the initial readings the test result shall not be regarded as having the required accuracy. The new temperature reading should not exceed the permitted range calculated in the preliminary survey. i.e. it should be within \pm 10% of the original mean temperature.

N.B. The filter head should be cleaned and the particulate matter added to the particulate matter on the filter.

The Sampling procedure should be repeated to obtain a duplicate sample, the ratio of the two particulate emission rates should not exceed 1.5:1.

Weighing of Sample

The used filter should be placed in an oven at 180° C and dried thoroughly, cooled and equilibrated in a desiccator and weighed as quickly as possible so as to avoid any errors due to moisture absorption onto the filter. The gross weight of the filter should be measured to within <u>+</u> 0.1 mg. The filter weight and any residual particulate matter from the filter head can then be used in the final report to calculate the particulate concentration.

Preliminary	Stack Survey	Sampling Line A		Samplin	ig Line B
Traverse	Distance in	Dynamic	Temperature	Dynamic	Temperature
Point	Stack (m)	Pressure (Pa)	(°C)	Pressure (Pa)	(°C)
1	0.03	-	-	-	-
2	0.08	-	-	-	-
3	0.13	300	25	-	-
4	0.18	-	-	-	-
5	0.23	-	-	-	-
6	0.28	-	-	-	-
7	0.33	-	-	-	-
8	0.38	300	25	-	-
9	0.43	-	-	-	-
10	0.48	-	-	-	-
Mean	-	300	25	-	-

On Site Isokinetic Data Sheet

Lowest Dynamic Pressure (any line) Highest Dynamic Pressure (any line) 300 Ratio of Above300 (Highest permit

1.00 : 1

Temperature Range permitted for any point is between

(Highest permitted ratio 9:1)

between -5 and 55

Run 1		Sampling Time (mins)		20	Nozzle size us	ed (mm)	8.0
Sampling	Dynamic P	ressure (Pa)	Temperatu	re (°C)	Velocity (m/s)		Flowmeter
Point	Initial	Final	Initial	Final	Initial	Final	set at (m ³ /hr)
1	300	300	25	25	18.84	18.84	3.39
2	-	-	-	-	-	-	-
3	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-
Mean	300	300	25	25	18.84	18.84	3.39
Difference be	etween Initial	/elocity and Fir	nal Velocity =	0.00	%	(Limit permitted	is <u>+</u> 5%)
Start Filter W	eight =	0.1201	g Sample	e Weight =		0.03635	g
End Filter We	eight =	0.1565	g Sample	e as % of Filter	Weight =	30.26	%

Run 2		Sampling Tim	ne (mins)	20	Nozzle size us	ed (mm)	8.0
Sampling	Dynamic F	Pressure (Pa)	Temperatu	re (°C)	Velocity	Flowmeter	
Point	Initial	Final	Initial	Final	Initial	Final	set at (m ³ /hr)
1	300	300	25	25	18.84	18.84	3.39
2	-	-	-	-	-	-	-
3	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-
Mean	300	300	25	25	18.84	18.84	3.39
Difference be	etween Initial	Velocity and Fir	nal Velocity =	0.00	%	(Limit permitted	is <u>+</u> 5%)
Start Filter W	eight =	0.1182	g Sample	Weight =		0.01060	g
End Filter We	eight =	0.1288	g Sample	as % of Filter	Weight =	8.97	%

Stack Diagram

Stack Diameter (D) = 0.50 mStack Area (A) = 0.20 m^2

Sampling	Distance as	Distance
Point	a % of (D)	in m
1	30	0.15

Plant Layout

Quality Assurance Checklist

Velocity Measurements:

Were water droplets present ?	No
Direction of gas flow within $\pm 20^{\circ}$ of stack axis.	Yes
Dynamic pressures > 5 Pa at all sampling points.	Yes
Ratio of highest to lowest dynamic pressures < 9 : 1.	Yes
Sampling:	
Sampling plane was correctly positioned.	Yes
Area of sampling apparatus was < 10% of stack area.	Yes
Sampling was from centres of equal areas.	Yes
Sampling at each point not less than 3 minutes.	Yes
Nozzle was facing directly upstream to within \pm 10°.	Yes
Leak check performed before and after each run and passed.	Yes
Sample Handling:	
Minimum weight of samples collected > 0.3% of filter weights.	Yes
Samples achieved stable weights.	Yes
Particulate samples stored for 3 months.	Yes
QA Procedures:	
Isokinetic data sheet completed and signed off by Team Leader.	Yes
Report saved electronically onto Scientifics server.	Yes
Raw data and hard copy of report filed together.	Yes

Environmental Monitoring Team

Environmental Team Leader	Paul Adamczyk BSc (Hons) Fuel and Combustion S MSc Environmental Pollution Contro MCERTS Level 2, Technical Endors	cience I ement 1 & 4 - MM 04 547		
Environmental Technician	Robert Adamczyk BSc Environmental Science MCERTS Trainee - MM 06 721			
Report by	Paul Adamczyk Level 2 Team Leader			
Checked and Authorised By	Mark Allison	Print Name		
	7th November 2006	Dated		
	Team Leader	Business Title		

Conclusion

The results of this test demonstrate that under normal operating conditions, this Plant is being operated with emissions of total particulate matter in excess of the emission limit specified in PG 6/28 (04).

The performance of the Plant should be immediately investigated and steps taken to reduce emissions of total particulate matter to a level below the current emission limit of 10 mg/m³.

A regular programme of stack emissions testing in accordance with the Plant's Local Air Pollution Control Authorisation will be required to demonstrate future compliance.

Deviations from BS 3405 : 1983

AIR & EMISSIONS TESTING GROUP

Great Western One Bristol Street Swindon SN1 5ET Tel: 01793 714 714 Fax: 01793 714 715

Your contact at Scientifics:

Stuart Davidson Business Manager Tel: 01793 714 720 Fax: 01793 714 715 Email: stuart.davidson@scientifics.com

Stack Emissions Testing Report

Total Particulate Matter

Report Date / Version:	2nd February 2007 / Version 1
Report By:	Huw Williams
MCERTS Number:	MM 05 619
MCERTS Level:	MCERTS Level 1
Technical Endorsements:	TE 1
Report Approved By:	Laurence Sharrock
MCERTS Number:	MM 05 572
Business Title:	Level 2 - Team Leader
Technical Endorsements:	TE1 & TE2
Signature:	

VIP Polymers Limited

Huntingdon

MIR 7 Exhaust

Sampling Date:

30th January 2007

Job Number: LSW 01659

CONTENTS

	Page Number
TITLE PAGE	1
CONTENTS	2
EXECUTIVE SUMMARY	3
Stack Emission Monitoring Objectives - Plant - Operator - Stack Emissions Test House	3
- Analytical Laboratory (where applicable)	4
Monitoring Times	4 5 5
Monitoring Methods - Sampling Methods with Subsequent Analysis	6
- On-Site Testing Analytical Methods - Sampling Methods with Subsequent Analysis	7
- On-Site Lesting Measurement Uncertainty Sampling Location - Sampling Plane Validation Criteria	8 9
 Duct Characteristics Sampling Lines & Sample Points Sampling Platform 	
- Sampling Location / Platform Improvement Recommendations Sampling and Analytical Method Deviation Conclusion and Discussion	10 11
APPENDICES	12

EXECUTIVE SUMMARY (Page 1 of 9)

Stack Emissions Monitoring Objectives

VIP Polymers Limited operates a rubber moulding process at Huntingdon which is subject to a PPC Permit, under the Pollution Prevention & Control Regulations 2000.

Scientifics Limited were commissioned by VIP Polymers Limited to carry out stack emissions monitoring to determine the release of total particulate matter from the following Plant under Normal operating conditions.

The results of this test shall be used to demonstrate compliance with an emission limit value for total particulate matter as specified in the Plant's PPC Permit, PPC 11/94.

<u>Plant</u>

MIR 7 Exhaust

Operator

PPC Permit: PPC 11/94

VIP Polymers Limited St Peters Road Huntingdon Cambridgeshire PE29 7DA

Stack Emissions Monitoring

Scientifics Limited - Swindon Laboratory Great Western One Bristol Street Swindon SN1 5ET UKAS and MCERTS Number: 1015

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

This test report shall not be reproduced, except in full, without written approval of Scientifics Limited.

EXECUTIVE SUMMARY (Page 2 of 9)

Emissions Summary

VIP Polymers Limited, Huntingdon MIR 7 Exhaust 30th January 2007

Parameter	Units	Result	Uncertainty	Limit	Outcome
			+/-		
Total Particulate Matter	mg/m³	2.7	0.9	50	Passed
Particulate Emission Rate	g/hr	24.1	8.5	-	-
Moisture	%	1.1	0.11	-	-
Stack Gas Temperature	°C	28	-	-	-
Stack Gas Velocity	m/s	10.6	-	-	-
Gas Volumetric Flow Rate (Actual)	m³/hr	9734	-	-	-
Gas Volumetric Flow Rate (STP, Wet)	m³/hr	8809	-	-	-
Gas Volumetric Flow Rate (STP, Dry)	m³/hr	8709	-	-	-

All results are mean values, with pollutant concentrations expressed at reference conditions.

Particulate Matter: Reference conditions are 273K, 101.3kPa, without correction for water vapour content.

EXECUTIVE SUMMARY (Page 3 of 9)

Monitoring Times

Parameter	Sampling Date	Sampling Times	Sampling Duration
Total Particulate Matter	30th January 2007	14:18 - 14:48 / 14:52 - 15:22	60 minutes

Process Details

Parameter	Process Details
Process Status	Normal
Capacity and / or Production Rate	18.46 charges / hour
Continuous or Batch Process	Batch
Feedstock (if applicable)	Pipe Seals
Abatement System	None
Abatement System Running Status	N/A
Fuel (if applicable)	N/A
Plume Appearance	None visible from the sampling location

EXECUTIVE SUMMARY (Page 4 of 9)

Monitoring Methods

The selection of standard methods employed by Scientifics is determined, wherever possible by the hierarchy of method selection outlined in Environment Agency Technical Guidance Document (Monitoring) M2. i.e. CEN, ISO, BS, US EPA etc.

The table below summarises the monitoring methods, techniques and technical procedures employed, and details any deviations from the aforementioned hierarchy:

Sampling Methods with Subsequent Analysis

Species	Standard Method	Scientifics Technical Procedure	UKAS Lab Number	MCERTS Accredited	Limit of Detection	MU of Method	MU +/- %
TPM	BS EN 13284-1	AE 006	1015	Yes	~ 0.1 mg/m ³	-/- % 30%	35% (E)
H ₂ O	US EPA Method 4	AE 004	1015	Yes	0.1%	10%	-

where C = Calculated Measurement Uncertainty, E = Estimated Measurement Uncertainty

EXECUTIVE SUMMARY (Page 5 of 9)

Analytical Methods

The following tables list the analytical methods employed together with the custody and archiving details:

Sampling Methods with Subsequent Analysis

Species	Analytical Technique	Analytical Procedure	UKAS Lab Number	UKAS Accredited Analysis	Laboratory	Sample Archive Location	Archive Period
TPM	Gravimetric	AE 006	1015	Yes	Swindon	Swindon	3 months
H ₂ O	Gravimetric	AE 004	1015	Yes	Swindon	-	-

EXECUTIVE SUMMARY (Page 6 of 9)

Measurement Uncertainty (MU)

Total Particulate Matter

There are 4 ways in which to report measurement uncertainty for total particulate matter. These are listed in the hierarchical table below. The table also indicates which method has been taken to work out the MU for the parameters listed in this report.

MU Reported	Yes / No
a) Report a calculated MU	-
b) Report an <u>estimated</u> MU if there are any deviations from the sampling plane validation criteria	Yes
c) Report an <u>estimated</u> MU if there are any deviations from the specified method	Yes
d) Report the MU specified in the method	-

NOTE: The estimated uncertainty is based upon a calculated MU, coupled with the experience of the Stack Emissions Test house.

EXECUTIVE SUMMARY (Page 7 of 9)

Sampling Location

Sampling Plane Validation Criteria (BS EN 13284-1)	Value	Units	Requirement	Compliance	Method
Lowest Differential Pressure	5	Pa	> 5 Pa	No	All
Lowest Gas Velocity	2.38	m/s	-	-	-
Highest Gas Velocity	15.92	m/s	-	-	-
Ratio of Above	6.68	: 1	< 3 : 1	No	All
Mean Velocity	6.99	m/s	-	-	-
Angle of flow with regard to duct axis	0	0	< 15°	Yes	All
No local negative flow	-	-	-	Yes	All
Highly homogeneous flow stream / gas velocity	-	-	-	Yes	ISO 10396

Duct Characteristics

	Value	Units
Туре	Circular	-
Depth	0.57	m
Width	-	m
Area	0.26	m²
Port Depth	40	mm

Sampling Lines & Sample Points

	ТРМ
Sample Port Size	4 inch BSP
Number Used	2
Orientation	Horizontal
Number Points / Line	2
In Stack / Out Stack Filtration	Out Stack

Sampling Platform

General Platform Information	
Permanent / Temporary Platform	Permanent
Inside / Outside	Outside

Annex A (BS EN 13284-1) Normative requirements	
Minimum Platform Area 5 m ²	Yes
Platform has 2 levels of handrails (approximately 0.5 m & 1.0 m high)	N/A
Platform has vertical base boards (approximately 0.25 m high)	N/A
Platform has removable chains / self closing gates at the top of ladders	N/A
Handrail / obstructions do not hamper insertion of sampling equipment	Yes
Depth of Platform = Minimum of 2m or Probe Length + 1m	Yes

Sampling Location / Platform Improvement Recommendations

The sampling location meets all the requirements as specified in BS EN 13284-1.

EXECUTIVE SUMMARY (Page 8 of 9)

Sampling & Analytical Method Deviations

Nozzle Size

The nozzle size used is less than the minimum required for the testing standard (6.0 mm), this is due to this being the correct nozzle size required for sampling isokinectically.

Gas Velocity Ratio

The velocities within the stack are greater than the ratio of 3:1, as outlined in the testing standard. This is due to the sampling location not being fully compliant with the requirements of BS EN 13284-1.

EXECUTIVE SUMMARY (Page 9 of 9)

Conclusion & Discussion

The results of these tests demonstrate that under normal operating conditions, this Plant is being operated in full compliance with the emission limits specified in its PPC Permit, PPC 11/94.

A regular programme of stack emissions testing in accordance with the Plant's PPC Permit, PPC 11/94, will be required to demonstrate continued compliance.

APPENDICES

CONTENTS

CONTENTS	12
APPENDIX 1 - Stack Emissions Monitoring Team	13
APPENDIX 2 - Summaries, Calculations, Raw Data and Charts	14 - 20
Total Particulate Matter Summary Total Particulate Matter Isokinetic Sampling Equations Total Particulate Matter Quality Assurance Checklist	14 15 18
Preliminary Stack Survey Stack Diagram Plant Layout	19 20 20
APPENDIX 3 - Calibrateable Equipment Checklist	21
APPENDIX 4 - Measurement Uncertainty Budget - Total Particulate Matter	22
APPENDIX 1 - Stack Emissions Monitoring Team

STACK EMISSIONS MONITORING TEAM

BSc (Hons) Environmental Science

Environmental Team Leader	Brenton Wells MCERTS Level 2, Technical Endorsements 1, 2 & 4 MM 03 196 BSc (Hons) Environmental Risk Management
Environmental Technician	Huw Williams MCERTS Level 1, Technical Endorsement 1 MM 05 619

TOTAL PARTICULATE MATTER SUMMARY

VIP Polymers Limited, Huntingdon MIR 7 Exhaust 30th January 2007

Test	Sampling Times	Duration min	Concentration mg/m ³	Emission Rate g/hr
Particulate Matter	14:18 - 14:48 / 14:52 - 15:22	60	2.7	24.1

Reference conditions are 273K, 101.3kPa, without correction for water vapour content.

Overall Blank Value	Daily Emission Limit Value	Weighing Uncertainty
mg/m ³	mg/m³	± mg
0.46	50	0.37

Acetone Blank Value	Acceptable Value
mg/l	mg/l
1.0	10

ISOKINETIC SAMPLING EQUATIONS 1

Total Particulate Matter

Test	1	Units
Absolute pressure of stack gas, P _s		
Barometric pressure, P _b	758.3	mm Hg
Stack static pressure, P _{static}	6.8	mm H₂O
$P_s = P_b + (P_{static})$	758.8	mm Hg
13.6		
Volume of water vapour collected, V _{wstd}		
Impinger volume collected	1	ml
Silica gel weight increase	7	g
Total volume of liquid collected, V _{ic}	8	ml
$V_{wstd} = (0.001246)(V_{lc})$	0.0099	m³
Volume of gas metered dry, V _{mstd}		
Volume of gas sample through gas meter, V_m	0.8345	m³
Gas meter correction factor, Y _d	1.0809	-
Average dry gas meter temperature, T _m	11.5	°C
Average pressure drop across orifice, ∆H	23.4	mm H₂O
$V_{mstd} = (0.3592)(V_m)(P_b + (\Delta H/13.6))(Y_d)$	0.8656	m³
T _m + 273		
Volume of gas metered wet, V _{mstw}		
$V_{mstw} = V_{mstd} + V_{wstd}$	0.8755	m ³
Moisture content, B _{wo}		
B _{wo} = V _{wstd}	0.011	m³
$V_{mstd} + V_{wstd}$	1.13	%
Molecular weight of dry gas stream, M _d		
CO ₂	0.03	%
O ₂	20.8	%
Total	20.8	%
N ₂ (100 -Total)	79.2	%
$M_{d} = 0.44(\%CO_{2}) + 0.32(\%O_{2}) + 0.28(\%N_{2})$	28.84	g/gmol
Molecular weight of stack gas (wet), M _s		
$M_s = M_d(1 - B_{wo}) + 18(B_{wo})$	28.71	g/gmol

ISOKINETIC SAMPLING EQUATIONS 2

Total Particulate Matter

Test	1	Units
Velocity of stack gas, V _s		
Pitot tube velocity constant, K _p	34.97	-
Velocity pressure coefficient, C _p	0.82	-
Average of velocity heads, ΔP_{avg}	9.88	mm H₂O
Average square root of velocity heads, $\sqrt{\Delta}P$	3.14	√mm H₂O
Average stack gas temperature, T _s	28	°C
$V_{s} = (K_{p})(C_{p})(\sqrt{\Delta}P)(\sqrt{T_{s}} + 273)$	10.59	m/s
$\overline{\sqrt{(M_s)(P_s)}}$		
Actual flow of stack gas, Q _a		
Area of stack, A _s	0.26	m³
$Q_a = (60)(A_s)(V_s)$	162.2	m³/min
Dry total flow of stack gas, Q _{std}		
Conversion factor (K/mm.Hg)	0.3592	-
$Q_{std} = (Q_a)P_s(0.3592)(1-B_{wo})$	145.1	m³/min
(T _s) +273		
Wet total flow of stack gas, Q _{stw}		
Conversion factor (K/mm.Hg)	0.3592	-
$Q_{stw} = (Q_a)P_s(0.3592)$	146.8	m³/min
(T _s) +273		
Percent isokinetic, %I		
Nozzle diameter, D _n	5.81	mm
Nozzle area, A _n	26.52	mm²
Total sampling time, θ	60	min
%I = (4.6398E6)(T _s +273)(V _{mstd})	95.7	%
$(P_s)(V_s)(A_n)(\theta)(1-B_{wo})$		
Acceptable isokinetic range 95% to 115%	Yes	-

ISOKINETIC SAMPLING EQUATIONS 3

Total Particulate Matter

Test	1	Units
Particulate Concentration, C		
Mass of particulate collected on filter, M _f	0.0003	g
Mass of particulate collected in probe, M _p	0.0021	g
Mass of total particulate collected, M _n	0.0024	g
$C_{wet} = M_n$	2.74	mg/m³
V _{mstw}		
$C_{dry} = M_n$	2.77	mg/m³
V _{mstd}		
Particulate Emission Rates, E		
$E = [(C_{wet})(Q_{stw})(60)] / 1000$	24.1	g/hr
Weighing, Conditioning & Filtration Temperatures		
Pre-conditioning temperature	180	°C
Maximum filtration temperature	171	°C
Post-conditioning temperature	160	°C

TOTAL PARTICULATE MATTER QUALITY ASSURANCE CHECKLIST

Leak Test Results	Value	Units]
Mean Sampling Rate	15.0	litre/min	-
Pre-sampling Leak Rate	0.06	litre/min	
Post-sampling Leak Rate	0.08	litre/min	
Acceptable Leak Rate	0.30	litre/min	
Leak Tests Acceptable	Yes	-]
Overall Blank Value	Value	Units]
Overall Blank Value	0.46	mg/m³	
Daily Emission Limit Value	50	mg/m³	
Acceptable Blank Value	5	mg/m³	
Overall Blank Acceptable	Yes	-]
Isokinetic Criterion Compliance	Value	Units]
Isokinetic Variation	95.7	%	-
Acceptable Isokineticity	Yes	-	Acceptable isokinetic range 95% to 115%
Total Particulate Matter Filters	Value	Units]
Filter Material	GF	-	GF = Glass Fibre QF = Quartz Fibre
Filter Size	47	mm]

PRELIMINARY STACK SURVEY

VIP Polymers Limited, Huntingdon MIR 7 Exhaust 30th January 2007

Time of Survey	13:45 - 13:55
Velocity Measurement Device:	S-Type Pitot

Sampling Line A							
Traverse	Distance	∆Ppt	∆Ppt	Temp	Velocity	O ₂	Angle
Point	into	mmH₂O	Ра	°C	m/s	%	of Swirl
	duct (m)					Vol	o
1	0.03	9.1	89	28	10.17	-	0
2	0.09	3.8	37	28	6.57	-	
3	0.14	1.0	10	28	3.37	-	
4	0.20	0.8	8	28	3.01	-	
5	0.26	0.5	5	28	2.38	-	
6	0.31	1.1	11	28	3.54	-	
7	0.37	2.0	20	28	4.77	-	
8	0.43	8.6	84	28	9.88	-	
9	0.48	10.8	106	28	11.08	-	
10	0.54	16.5	162	28	13.69	-	0
Mean	-	5.4	53	28	6.85	-]
				Sampling Line	B		
Traverse	Distance	ΔP pt	ΔPpt	Temp	Velocity	O ₂	Angle
Point	into	mmH ₂ O	Pa	°C	m/s	%	of Swirl
	duct (m)					Vol	0
1	0.03	4.6	45	28	7.23	-	0
2	0.09	1.5	15	28	4.13	-	
3	0.14	7.0	69	28	8.92	-	
4	0.20	0.5	5	28	2.38	-	
5	0.26	0.5	5	28	2.38	-	
6	0.31	1.2	12	28	3.69	-	
7	0.37	0.7	7	28	2.82	-	
8	0.43	7.2	71	28	9.04	-	
9	0.48	19.4	190	28	14.85	-	
10	0.54	22.3	219	28	15.92	-	0
Mean	-	6.5	64	28	7.14	-	

STACK DIAGRAM

	Value	Units
Stack Depth	0.57	m
Stack Width	-	m
Area	0.26	m²

Sampling	Distance	Distance into	Units
Point	(% of Depth)	Stack	
1	15	0.09	m
2	85	0.48	m
3	15	0.09	m
4	85	0.48	m

PLANT LAYOUT

APPENDIX 3 - Calibrateable Equipment Checklist

Extractive Sampling		Instrumental Analyser/s		Miscellaneous		
				-		
Equipment	Equipment I.D.	Equipment	Equipment I.D.	Equipment	Equipment I.D.	
Control Box DGM	13-03	Horiba PG-250 Analyser	-	Laboratory Balance	50-10	
Box Thermocouples	03-09	Horiba PG-200 Cooler	-	Tape Measure	24-06	
Meter In Thermocouple	10-26	JCT JCC P-1 Cooler	-	Stopwatch	17-01	
Meter Out Thermocouple	10-27	Testo 350 Analyser	-	Protractor	-	
Control Box Timer	17-08	Testo 339 Cooler	-	Barometer	08-03	
Umbilical	03-11	FT-IR	-	Digital Micromanometer	01-01	
Oven Box	03-08	FT-IR Oven Box	-	Digital Temperature Meter	03-02	
Probe	11-03	Bernath 3006 FID	-	Stack Thermocouple	10-42	
S-Pitot	06-08	Signal 3010 MINIFID	-	Drycal	-	
L-Pitot	-	Signal 3030 FID	-	Mass Flow Controller	-	
Site Balance	-	Servomex 570A	-	Mass Flow Control Box	-	
Last Impinger Arm	-	JCT Heated Head Filter	-	1m Heated Line	-	
Callipers	30-02			5m Heated Line (1)	-	
Small DGM	-			5m Heated Line (2)	-	
				10m Heated Line (1)	-	
				10m Heated Line (2)	-	
				15m Heated Line (1)	-	
				15m Heated Line (2)	-	

CALIBRATEABLE EQUIPMENT CHECKLIST

NOTE: If the equipment I.D is represented by a dash (-), then this piece of equipment has not been used for this test.

MEASUREMENT UNCERTAINTY BUDGET - TOTAL PARTICULATE MATTER

	Value	Units
Limit value	50	mg/m ³
Measured concentration	2.7	mg/m ³
Reference oxygen	N/A	% by volume

Measured Quantities	Symbol	Value	Units
Sampled Volume	V _m	0.8656	m³
Sampled Gas Temperature	Τ _m	284	К
Sampled Gas Pressure	$ ho_m$	101.1	KPa
Sampled Gas Humidity	H _m	0.0	% by volume
Oxygen Content	O _{2,m}	N/A	% by volume
Mass of Particulate	m	2.4	mg
Leak	L	0.53	%
Uncollected Mass	UCM	0.40	mg

NOTE: Sampled Gas Temperature, Pressure and Humidity are at the Dry Gas Meter.

Standard Uncertainty	Symbol	Value	Units	Uncertainty	Uncertainty	Uncertainty
				as a %	Required	Met?
Sampled Volume	uV _m	0.0173	m³	2.0	<u><</u> 2%	Yes
Sampled Gas Temperature	uT _m	3	K	1.0	<u><</u> 1%	Yes
Sampled Gas Pressure	uρ _m	1.0110	KPa	1.0	<u><</u> 1%	Yes
Sampled Gas Humidity	uH _m	0.0000	% by volume	0.0	<u><</u> 1%	Yes
Oxygen Content	uO _{2,m}	N/A	% by volume	N/A	<u><</u> 5%	N/A
Mass of Particulate	um	0.3700	mg	0.8	<u><</u> 5% of ELV	Yes
Leak	-	-	-	0.5	<u><</u> 2%	Yes
Uncollected Mass	-	-	-	0.9	<u><</u> 10% of ELV	Yes

Parameter	Symbol	Value	Units	Uncertainty	Units	Uncertainty	Units
				in Result		as a %	
Volume (STP)	V	0.8291	m³	0.07	mg/m³	2.52	%
Mass of Particulate	m	2.4	mg	0.42	mg/m³	15.42	%
Factor for O2 Correction	fc	N/A	-	0.00	mg/m³	0.00	%
Leak	L	0.01	mg/m³	0.01	mg/m³	0.31	%
Uncollected mass	UCM	0.23	mg	0.26	mg/m³	9.62	%
Combined uncertainty				0.50	mg/m³	18.35	%
Uncertainty expressed at	a 95% confid	lence level (w	/here k = 2)	0.99	mg/m³	36.70	%

Uncertainty expressed at a 95% confidence level (where k = 2) 0.99

(k is a coverage factor which gives a 95% confidence in the quoted figures)

NOTE: Because there are one or more method deviations from BS EN 13284-1, a calculated MU can not be quoted for the concentration or mass emission of total particulate matter. Instead, this figure may be used to make a best estimate of what the MU might be.

AIR & EMISSIONS TESTING GROUP

52 Offerton Industrial Estate, Hempshaw Lane, Stockport, SK2 5TJ. Tel: 0161 477 3004 Fax: 0161 480 4642 Mobile: 07973 319576 (24 Hours) Email: james.bealing@scientifics.com

Stack Emissions Testing Report

Total Particulate Matter
Volatile Organic Compounds

VIP Polymers Ltd

Huntingdon

Air Tech Environmental Consultancy Services

15 Sacomat

Sampling Date

26th September 2006

Report by

Paul Adamczyk

Job Number

LAB 06679

Contents

	Page
Title Page	1
Introduction	2
Emissions Summary	3
Written Summary	3
Total Particulate Matter Summary	4
36 Summary	4
Volatile Organic Compounds Emission Profile	5
Volatile Organic Compounds Emission Data	5
Volatile Organic Compounds Sampling Methodology	6
Calculations - Run 1	7
Calculations - Run 2	8
Total Particulate Matter Sampling Methodology	9
On Site Isokinetic Data Sheet	11
Stack Diagram	12
Plant Layout	12
Quality Assurance Checklist	13
Environmental Monitoring Team	14
Deviations from BS 3405 : 1983	15
Conclusion	15

Introduction

VIP Polymers Ltd operates a rubber products manufacturing process process at Huntingdon which is subject to Local Air Pollution Control by Huntingdon District Council under the Pollution Prevention

Scientifics Limited, working in partnership with Air Tech ECS, were commissioned by VIP Polymers Ltd to carry out stack emissions testing to determine the release of total particulate matter and volatile organic compounds from the following Plant under normal operating conditions.

Company	VIP Polymers Ltd
Site	Huntingdon
Stack	15 Sacomat
Sampling Date	26th September 2006
Time Test Started	19:23
Time Test Ended	20:08
Operating Conditions	Normal
Materials Processed	Rubber
Plume Appearance	None Visible

Throughout sampling, the operating conditions were maintained as above. Any deviations from BS 3405 : 1983 are noted in the conclusion.

Emissions Summary

Company Site Stack Sampling Date VIP Polymers Ltd Huntingdon 15 Sacomat 26th September 2006

Parameter	Units	Result	Limit	Outcome
Total Particulate Matter	mg/m ³	0.02	10	Passed
Particulate Emission Rate	g/s	0.06	-	-
Volatile Organic Compounds	mg/m ³	1.8	50	Passed
VOC Emission Rate	g/hr	6.1	-	-
Stack Gas Temperature	°C	30	-	-
Stack Gas Volumetric Flow Rate (Actual)	m ³ /hr	3814	-	-
Stack Gas Volumetric Flow Rate (STP)	m ³ /hr	3394	-	-
Stack Gas Velocity	m/s	11.0	-	-

All results are mean values, with particulate concentrations expressed at reference conditions.

Reference conditions are 273K, 101.3 kPa, without correction for water vapour content.

Written Summary

Total Particulate Matter	Passed

Two particulate tests were performed during continuous operating conditions. The mean sampling time was 20 minutes. The mean particulate concentration was 0.02 mg/m³ at reference conditions. This value is below the specified emission limit of 10 mg/m³. This is below the specified emission limit.

The tests were performed following the main procedural requirements of BS 3405 : 1983 using a Ströhlein STE 4 isokinetic particulate sampling train.

Volatile Organic Compounds	Passed

VOC (as Carbon) concentrations were measured continuously over a 30 minute period, with average values being recorded at 1 minute intervals. The mean VOC (as Carbon) concentration was 1.8 mg/m^3 .

The sampling was performed in accordance with the main procedural requirements of BS 12619 : 1999 using a heated sampling line and a Signal 3010 MINIFID portable VOC analyser, with detection by FID calibrated against 74.6 ppm propane certified span gas.

Total Particulate Matter Summary

Sample	Sampling Times	Concentration	Limit	
Run 1	19:23 - 19:43	0.02 mg/m ³	10 mg/m ³	
Run 2	19:48 - 20:08	0.02 mg/m ³	10 mg/m ³	
Mean Particulate Cond	centration	0.02 mg/m ³	10 mg/m ³	

Sample	Sampling Times	Particulate Emission Rate	Ratio of Particulate Emission Rates
Run 1	19:23 - 19:43	0.00002 g/s	-
Run 2	19:48 - 20:08	0.00002 g/s	-
Mean Particulate Emis	sion Rate	0.00002 g/s	1.0 : 1

Volatile Organic Compounds Summary

Sampling Times	Concentration	Limit	Emission Rate	Limit
	(mg/m)	(mg/m)	(g/nr)	(g/m/)
19:16 - 19:46	1.8	50	6.1	-

Reference conditions are 273K, 101.3kPa, without correction for water vapour content.

Volatile Organic Compounds Emissions Profile

Volatile Organic Compounds Emissions Data

Time	VOC	VOC	Time	VOC	VOC
	ppm	mg/m ³		ppm	mg/m ³
19:16	0.4	0.7	19:32	0.9	1.4
19:17	0.5	0.8	19:33	1.0	1.6
19:18	0.5	0.8	19:34	0.8	1.3
19:19	0.3	0.6	19:35	0.9	1.5
19:20	0.3	0.6	19:36	1.0	1.5
19:21	0.5	0.8	19:37	1.0	1.6
19:22	0.4	0.6	19:38	0.9	1.5
19:23	0.8	1.3	19:39	0.9	1.4
19:24	0.7	1.1	19:40	0.9	1.5
19:25	1.1	1.7	19:41	0.9	1.4
19:26	5.7	9.2	19:42	1.3	2.0
19:27	3.3	5.3	19:43	1.0	1.7
19:28	1.3	2.0	19:44	1.3	2.0
19:29	1.2	1.9	19:45	1.3	2.1
19:30	1.0	1.6	19:46	1.6	2.6
19:31	0.9	1.5	Mean	1.1	1.8

Reference conditions are 273K, 101.3 kPa, without correction for water vapour content.

Volatile Organic Compounds Sampling Methodology

The Signal 3010 MINIFID Portable Heated Total Hydrocarbon Analyser uses Flame Ionisation to detect total organic carbon in a gas stream.

Checks Carried Out before Arrival On Site

The FID analyser is set up and is tested. The following are checked; the furnace and sample line temperatures, the zero and span gas calibration and the operation of the data logger.

On Site Sampling Procedure

The FID and sample line are switched on and allowed to reach operational temperature. The analyser will take 20 minutes to reach its operational temperature of 180°C. The sample line is heated to approximately 180°C to avoid VOCs condensing in the line. When the components have reached the correct operating temperature the fuel and span gas valves are opened and the FID is ignited.

The FID will take about 20 minutes before it stabilises and gives a zero ppm reading. The zero gas is fed into the FID and the zero set. The span gas is fed into the FID and the instrument adjusted to read the certified span gas value. The zero gas is fed into the FID once more to check that the reading returns to zero, if it does not, then these steps are repeated.

The probe, with a particulate filter, is then inserted into the stack, and the data logger activated.

The data logger can be programmed to log results over a 1, 5, 10 etc minute period. The results displayed and logged are the volume concentration of propane in ppm, which are converted to mg/m³ by the following calculations:

 $C_{m} = C_{v} \qquad \frac{36}{22.4}$

where	C _m	is the TOC concentration in mg/m ³ (273 K; 101300 Pa)	
	C	is the volume concentration of propose in part (by volume	

 C_v is the volume concentration of propane in ppm (by volume)

Calculations - Run 1

1. Stack Gas Velocity (V)

V =	0.075 x Cp x √∆P x √T
V =	Velocity (m/s)
Cp =	Pitot Tube Calibration Coefficient
$\Delta P =$	Mean Differential Pressure (Pa)
-	

T = Mean Temperature (K)

2. Stack Gas Volumetric Flow Rate (Q)

10.99 m/s 0.35 m
0.10 m ²
302.50 K
99.80 kPa
0.07 kPa
101.30 kPa

$Q_{(STP)} =$	<u>273</u> x	(<u>PA + Pst</u>) x V x A	$Q_{(actual)} =$	VхА	
	Т	Рв			

 $Q_{(STP)} = 0.94 \text{ m}^{3}/\text{s}$

$Q_{(actual)} = 1.06 \text{ m}^3/\text{s}$

3. Particulate Mass Emission Rate (M)

No. of Sampling Points (n)		4		
Duration at each point (s)		300 s		
Nozzle area (a)		50.27 mm ²		
Particulate mass (m)		0.00001 g		
Stack Area (A)		0.10 m ²		
$M = \frac{(A \times m)}{(n \times a \times s)} \times 10^{6}$	=	1.6E-05 g/s		

M = 0.0000 g/s

4. Particulate Concentration (C) at 273K, 101.3kPa

 $C = (M / Q_{(STP)}) \times 1000$

 $C = 0.02 \text{ mg/m}^3$

1. Stack Gas Velocity (V)

V =	0.075 x Cp x √∆P x √T
-----	-----------------------

V = Velocity (m/s)

Cp = Pitot Tube Calibration Coefficient

- $\Delta P =$ Mean Differential Pressure (Pa)
- T = Mean Temperature (K)

2. Stack Gas Volumetric Flow Rate (Q)

Stack Gas Velocity (V) Stack Diameter (D)	11.04 m/s 0.35 m
Stack Area (A)	0.10 m ²
Stack Temperature (T)	302.50 K
Atmospheric Pressure (PA)	99.80 kPa
Static Pressure (Pst)	0.07 kPa
Standard Barometric Pressure (PB)	101.30 kPa

$Q_{(STP)} =$	<u>273</u>	х	(<u>PA + P</u> St) x V x A	$Q_{(actual)} =$	VxA	
	Т		Рв			

=

 $Q_{(STP)} = 0.94 \text{ m}^3/\text{s}$ $Q_{(actual)} = 1.06 \text{ m}^3/\text{s}$

4 300 s

50.27 mm²

0.0000 g 0.10 m²

1.6E-05 g/s

3. Particulate Mass Emission Rate (M)

No. of Sampling Points (n) Duration at each point (s) Nozzle area (a) Particulate mass (m) Stack Area (A)

 $M = (A \times m) \times 10^{6}$ (n x a x s)

M = 0.000 g/s

4. Particulate Concentration (C) at 273K, 101.3 kPa

 $C = (M / Q_{(STP)}) \times 1000$

$C = 0.02 \text{ mg/m}^3$

Total Particulate Matter Sampling Methodology

Job Preparation

A pre-site survey must first be undertaken to obtain the following information. Client details (full address & contact names), description of stack (name & location), sampling platform / access (Permanent - platform of adequate size & load capability, kick boards, hand & middle rails, free from debris, good drainage, fixed ladders with hoops and chain. Temporary - adequate size & load capability, stabilising legs, valid inspection tag, kick boards, hand & middle rails. Both types of platform must have a secure anchorage point to fix pulley system) hazards (dust, noise, temperature, gases/vapours, vibration, light, moving machinery, electricity etc) power supply and location, additional PPE required (high temperature gloves/overalls, PPE).

The Strohlein STE 4, isokinetic particulate measurement equipment, is fully inspected prior to use and its calibration status observed. This includes:

Pitot Tube - All pitot tubes are physically checked for damage, paying particular attention to the inlet holes. All dirt and blockages are removed.

Micromanometer - Digital differential pressure meters are used capable of measuring pressure in the range 0 Pa to 2250 Pa with a sensitivity of ± 1 Pa. These instruments are checked for obvious physical damage, battery life tested and calibrated status observed.

Thermocouple - Temperature is measured using k type thermocouples. Each thermocouple is inspected for obvious damage and its calibration status observed. Digital temperature meters are used in conjunction with K type thermocouples. These are also checked for obvious physical damage and their battery life tested.

Nozzles - All nozzles used have been constructed in accordance BS 3405 : 1983, section 5.3.2. Each nozzle is physically checked for damage and removed if necessary. The nozzle calibration status is observed.

Flowmeter - The flowmeter is checked for blockages and obvious physical damage. Its calibration status is also observed.

Balance - A Mettler Toledo balance is used to weigh filters. The balance is positioned on a solid base located in a specially built weighing room. The balance is serviced and calibrated routinely each year by the manufacturer and also checked daily with in-house check weights.

Rope Kit - All lifting tackle i.e. rope, pulleys, karabiners, brakes and slings are physically checked for cuts and contamination.

Should the calibration certainty of any of the above equipment be in question, that item of equipment must be recalibrated and replaced if necessary.

Filter Selection and Preparation

Stack conditions can vary greatly for temperature, moisture, acidity, low and heavy particulate loading. Following the pre-site survey, the stack gas condition should be known and the appropriate filter can be selected and prepared as described below.

Filter mediums - glass wool, quartz wool, Gelman Sciences A/C Glass Fibre filter papers, Gelman Sciences Low Ash PVC membrane filter papers, Schleicher & Schuell Glass Fibre Thimbles or Schleicher & Schuell Quartz Thimbles.

Filters are prepared by drying in an oven at 160°C for a period of one hour and then placed to cool in a dessicator. The filters are weighed accurately on a 4-figure balance and then placed in clean individual petri dishes and transported to site in a filter storage box. Spare filters are also prepared to allow for accidents and to obtain blank values.

Sampling Procedure

Suitability of Sampling Location

Before sampling can commence, a preliminary velocity and temperature survey must be undertaken along the two sampling lines at ten equally spaced points excluding the region within 5% of the effective flue diameter from the wall. The stack diameter is measured using a steel rod. If the ratio of the highest to lowest dynamic pressures exceeds 9:1 or if the ratio of the highest to lowest gas velocities exceeds 3:1, another sampling plane should be used. Sampling is undertaken from either four or eight sampling points.

Total Particulate Matter Sampling Methodology

Four sampling points are used when the ratio of the highest to lowest dynamic pressures is less than 4:1 and eight sampling points when the ratio of highest to lowest dynamic pressures exceeds 4:1 but less than 9:1 or the stack area exceeds 2.5 m^2 . Temperature is also measured at ten equally spaced points along the sampling lines and an average temperature calculated. Should the temperature at any of the sampling points differ by more than + 10% from that of the average temperature, then that point must not be used.

The required number of sampling points can now be calculated using the following:

- 4 point sampling, circular stacks: 0.15 x D and 0.85 x D.
- 4 point sampling, square stacks: 0.25 x D and 0.75 x D.
- 8 point sampling, circular stacks: 0.065 x D, 0.25 x D, 0.75 x D and 0.935 x D.
- 8 point sampling, square stacks: 0.125 x D, 0.375 x D, 0.625 x D and 0.875 x D.

Leak Checks

A leak check should be undertaken before and after the iso-kinetic sampling is carried out. This is to make sure that all suction is taken at the sampling nozzle.

Sampling

Once the iso-kinetic sampling flow rates have been calculated, the probe is inserted into the stack at 90° to the stack gas flow, as not to impinge any particulate matter on to the filter media prior to sampling. Allow the filter head and probe to attain the stack gas temperature. Start the suction device, and set the flowmeter to the correct suction rate for isokinetic sampling. At the same time turn the nozzle into flow and start the timing device.

Duration of Sampling Time

Duration of sampling time depends on :

- (a) ensuring adequate quantities of particulate matter on the filter for weighing (> 0.3 % of the filter weight).
- (b) whether cumulative or incremental sampling is undertaken.
- (c) the number of sampling points i.e. either 4 or 8 point sampling.
- (d) the continuity of plant operation.

Cumulative Sampling

After the first sample is taken from the first sampling position the control valve is closed simultaneously turning the sampling probe 90° to the stack gas flow, moving the probe to the next sample position. This process should be repeated until all the sample points have been used once.

Repeat Velocity and Temperature Readings

At each of the sampling points repeat the readings for the stack gas flow rate and stack gas temperatures. Calculate the new iso-kinetic sampling flow rates. If the stack gas velocity is more than \pm 5% from the initial readings the test result shall not be regarded as having the required accuracy. The new temperature reading should not exceed the permitted range calculated in the preliminary survey. i.e. it should be within \pm 10% of the original mean temperature.

N.B. The filter head should be cleaned and the particulate matter added to the particulate matter on the filter.

The Sampling procedure should be repeated to obtain a duplicate sample, the ratio of the two particulate emission rates should not exceed 1.5:1.

Weighing of Sample

The used filter should be placed in an oven at 180° C and dried thoroughly, cooled and equilibrated in a desiccator and weighed as quickly as possible so as to avoid any errors due to moisture absorption onto the filter. The gross weight of the filter should be measured to within <u>+</u> 0.1 mg. The filter weight and any residual particulate matter from the filter head can then be used in the final report to calculate the particulate concentration.

On Site	Isokinetic	Data Sheet

	Preliminary Stack Survey		Sampling Line A		Sampling Line B		
	Traverse	Distance in	Dynamic	Temperature	Dynamic	Temperature	
	Point	Stack (m)	Pressure (Pa)	(°C)	Pressure (Pa)	(°C)	
	1	0.02	106	30	-	-	
	2	0.05	99	30	-	-	
	3	0.09	114	30	-	-	
	4	0.12	117	30	-	-	
	5	0.16	124	30	-	-	
	6	0.19	81	30	-	-	
	7	0.23	79	30	-	-	
	8	0.26	88	30	-	-	
	9	0.30	87	30	-	-	
	10	0.33	82	30	-	-	
	Mean	-	98	30	-	-	
Lowest Dynamic Pressure (any line) Highest Dynamic Pressure (any line) Temperature Range permitted for any poi		79 124 nt is between	Ratio of Above (Highest perm	e itted ratio 9:1) 0	1.57 and	: 1 60	
Run 1		Sampling Tim	ne (mins)	20	Nozzle size us	ed (mm)	8.0
Sampling	Dynamic P	ressure (Pa)	Temperature (°C)		Velocity (m/s)		Flowmeter
Point	Initial	Final	Initial	Final	Initial	Final	set at (m ³ /hr)
1	106	136	30	29	11.29	12.77	2.00
2	114	110	30	29	11.71	11.48	2.07
3	88	90	30	29	10.29	10.39	1.82
4	82	84	30	29	9.93	10.03	1.76
Mean	98	105	30	29	10.80	11.17	1.91
Difference between Initial Velocity and Fin		nal Velocity =	3.25	%	(Limit permitted	is <u>+</u> 5%)	
Start Filter W	Start Filter Weight = 0.1160 g		g Sample	nple Weight =		0.00001 g	
End Filter We	eight =	0.1160	g Sample	g Sample as % of Filter Weight =		0.01 %	

Run 2		Sampling Tim	e (mins)	20	Nozzle size u	sed (mm)	8.0
Sampling	Dynamic F	Pressure (Pa)	Temperatu	re (°C)	Velocity	/ (m/s)	Flowmeter
Point	Initial	Final	Initial	Final	Initial	Final	set at (m ³ /hr)
1	136	100	29	30	12.77	10.97	2.27
2	110	108	29	30	11.48	11.40	2.04
3	90	98	29	30	10.39	10.86	1.84
4	84	90	29	30	10.03	10.40	1.78
Mean	105	99	29	30	11.17	10.91	1.98
Difference between Initial Velocity and Final Veloci		nal Velocity =	city = -2.40 %		(Limit permitte	d is <u>+</u> 5%)	
Start Filter W	/eight =	0.1181	g Sample	Weight =		0.0000	1 g
End Filter We	eight =	0.1181	g Sample	as % of Filte	er Weight =	0.0	1 %

Stack Diagram

Stack Diameter (D) =	0.35 m
Stack Area (A) =	0.10 m ²

Sampling	Distance as	Distance
Point	a % of (D)	in m
1	6.5	0.02
2	25.0	0.09
3	75.0	0.26
4	93.5	0.33

Plant Layout

Quality Assurance Checklist

Velocity Measurements:

Were water droplets present ?	No
Direction of gas flow within $\pm 20^{\circ}$ of stack axis.	Yes
Dynamic pressures > 5 Pa at all sampling points.	Yes
Ratio of highest to lowest dynamic pressures < 9 : 1.	Yes
Sampling:	
Sampling plane was correctly positioned.	Yes
Area of sampling apparatus was < 10% of stack area.	Yes
Sampling was from centres of equal areas.	Yes
Sampling at each point not less than 3 minutes.	Yes
Nozzle was facing directly upstream to within <u>+</u> 10°.	Yes
Leak check performed before and after each run and passed.	Yes
Sample Handling:	
Minimum weight of samples collected > 0.3% of filter weights.	No
Samples achieved stable weights.	Yes
Particulate samples stored for 3 months.	Yes
QA Procedures:	
Isokinetic data sheet completed and signed off by Team Leader.	Yes
Report saved electronically onto Scientifics server.	Yes
Raw data and hard copy of report filed together.	Yes

Environmental Monitoring Team

Environmental Team Leader	Paul Adamczyk BSc (Hons) Fuel and Combustior MSc Environmental Pollution Con MCERTS Level 2, Technical Endo	n Science trol prsement 1 & 4 - MM 04 547
Environmental Technician	Robert Adamczyk BSc Environmental Science MCERTS Trainee - MM06 721	
Report by	Paul Adamczyk Level 2 Team Leader	
Checked and Authorised By	Mark Allison	Print Name

 7th November 2006	Dated
Team Leader	Business Title

Conclusion

The results of this test demonstrate that under normal operating conditions, this Plant is being operated in compliance with the total particulate matter and volatile organic compounds emission limits specified in PG 6/28 (04).

Good housekeeping and maintenance of the ducting and associated Plant should be continued in order to maintain this level of Plant performance.

A regular programme of stack emissions testing in accordance with the Plant's Local Air Pollution Control Authorisation will be required to demonstrate continued compliance.

Deviations from BS 3405 : 1983

Less than 0.3% of the filter weight was collected during both sample runs. This was due to the very low level of particulate emissions from the Plant.

AIR & EMISSIONS TESTING GROUP

52 Offerton Industrial Estate, Hempshaw Lane, Stockport, SK2 5TJ. Tel: 0161 477 3004 Fax: 0161 480 4642 Mobile: 07973 319576 (24 Hours) Email: james.bealing@scientifics.com

Stack Emissions Testing Report

Total Pa	rticulate	Matt	er
Volatile	Organic	Com	pounds

VIP Polymers Ltd

Huntingdon

Air Tech Environmental Consultancy Services

24 Desma 10 Booth

Sampling Date

26th September 2006

Report by

Paul Adamczyk

Job Number

LAB 06679

Contents

	Page
Title Page	1
Introduction	2
Emissions Summary	3
Written Summary	3
Total Particulate Matter Summary	4
Volatile Organic Compounds Summary	4
Volatile Organic Compounds Emission Profile	5
Volatile Organic Compounds Emission Data	5
Volatile Organic Compounds Sampling Methodology	6
Calculations - Run 1	7
Calculations - Run 2	8
Total Particulate Matter Sampling Methodology	9
On Site Isokinetic Data Sheet	11
Stack Diagram	12
Plant Layout	12
Quality Assurance Checklist	13
Environmental Monitoring Team	14
Deviations from BS 3405 : 1983	15
Conclusion	15

Introduction

VIP Polymers Ltd operates a rubber products manufacturing process process at Huntingdon which is subject to Local Air Pollution Control by Huntingdon District Council under the Pollution Prevention and Control Regulations 2000.

Scientifics Limited, working in partnership with Air Tech ECS, were commissioned by VIP Polymers Ltd to carry out stack emissions testing to determine the release of total particulate matter and volatile organic compounds from the following Plant under normal operating conditions.

VIP Polymers Ltd
Huntingdon
24 Desma 10 Booth
26th September 2006
12:38
13:23
Normal
Rubber
None Visible

Throughout sampling, the operating conditions were maintained as above. Any deviations from BS 3405 : 1983 are noted in the conclusion.

Emissions Summary

Company Site Stack Sampling Date VIP Polymers Ltd Huntingdon 24 Desma 10 Booth 26th September 2006

Parameter	Units	Result	Limit	Outcome
Total Particulate Matter	mg/m ³	0.06	10	Passed
Particulate Emission Rate	g/s	0.11	-	-
Volatile Organic Compounds	mg/m ³	0.98	50	Passed
VOC Emission Rate	g/hr	1.9	-	-
Stack Gas Temperature	°C	23	-	-
Stack Gas Volumetric Flow Rate (Actual)	m ³ /hr	2081	-	-
Stack Gas Volumetric Flow Rate (STP)	m ³ /hr	1891	-	-
Stack Gas Velocity	m/s	8.2	-	-

All results are mean values, with particulate concentrations expressed at reference conditions.

Reference conditions are 273K, 101.3 kPa, without correction for water vapour content.

Written Summary

Total Particulate Matter	Passed

Two particulate tests were performed during continuous operating conditions. The mean sampling time was 20 minutes. The mean particulate concentration was 0.06 mg/m³ at reference conditions. This value is below the specified emission limit of 10 mg/m³. This is below the specified emission limit.

The tests were performed following the main procedural requirements of BS 3405 : 1983 using a Ströhlein STE 4 isokinetic particulate sampling train.

Volatile Organic Compounds	Passed
<u> </u>	

VOC (as Carbon) concentrations were measured continuously over a 30 minute period, with average values being recorded at 1 minute intervals. The mean VOC (as Carbon) concentration was 0.98 mg/m^3 .

The sampling was performed in accordance with the main procedural requirements of BS 12619 : 1999 using a heated sampling line and a Signal 3010 MINIFID portable VOC analyser, with detection by FID calibrated against 74.6 ppm propane certified span gas.

Total Particulate Matter Summary

Sample	Sampling Times	Concentration	Limit
Run 1	12:38 - 12:58	0.04 mg/m ³	10 mg/m ³
Run 2	13:03 - 13:23	0.07 mg/m ³	10 mg/m ³
Mean Particulate Concentration		0.06 mg/m ³	10 mg/m ³

Sample	Sampling Times	Particulate Emission Rate	Ratio of Particulate Emission Rates
Run 1	12:38 - 12:58	0.00002 g/s	-
Run 2	13:03 - 13:23	0.00004 g/s	-
Mean Particulate Emis	sion Rate	0.00003 g/s	1.5 : 1

Volatile Organic Compounds Summary

Sampling Times	Concentration	Limit	Emission Rate	Limit
	(mg/m ³)	(mg/m ³)	(g/hr)	(g/hr)
12:31 - 13:01	0.98	50	1.9	-

Reference conditions are 273K, 101.3kPa, without correction for water vapour content.

Volatile Organic Compounds Emissions Profile

Volatile Organic Compounds Emissions Data

Time	VOC	VOC	Time	VOC	VOC
	ppm	mg/m ³		ppm	mg/m ³
12:31	0.64	1.02	12:47	0.44	0.70
12:32	0.44	0.70	12:48	0.41	0.66
12:33	0.45	0.72	12:49	0.77	1.24
12:34	0.65	1.04	12:50	0.72	1.16
12:35	0.62	1.00	12:51	0.75	1.20
12:36	0.59	0.94	12:52	0.57	0.92
12:37	0.56	0.90	12:53	0.59	0.94
12:38	0.74	1.18	12:54	0.47	0.76
12:39	0.87	1.40	12:55	0.87	1.40
12:40	0.84	1.34	12:56	0.70	1.12
12:41	0.59	0.94	12:57	0.56	0.90
12:42	0.56	0.90	12:58	0.37	0.60
12:43	0.57	0.92	12:59	0.41	0.66
12:44	0.89	1.42	13:00	0.36	0.58
12:45	0.66	1.06	13:01	0.69	1.10
12:46	0.54	0.86	Mean	0.61	0.98

Reference conditions are 273K, 101.3 kPa, without correction for water vapour content.

Volatile Organic Compounds Sampling Methodology

The Signal 3010 MINIFID Portable Heated Total Hydrocarbon Analyser uses Flame Ionisation to detect total organic carbon in a gas stream.

Checks Carried Out before Arrival On Site

The FID analyser is set up and is tested. The following are checked; the furnace and sample line temperatures, the zero and span gas calibration and the operation of the data logger.

On Site Sampling Procedure

The FID and sample line are switched on and allowed to reach operational temperature. The analyser will take 20 minutes to reach its operational temperature of 180°C. The sample line is heated to approximately 180°C to avoid VOCs condensing in the line. When the components have reached the correct operating temperature the fuel and span gas valves are opened and the FID is ignited.

The FID will take about 20 minutes before it stabilises and gives a zero ppm reading. The zero gas is fed into the FID and the zero set. The span gas is fed into the FID and the instrument adjusted to read the certified span gas value. The zero gas is fed into the FID once more to check that the reading returns to zero, if it does not, then these steps are repeated.

The probe, with a particulate filter, is then inserted into the stack, and the data logger activated.

The data logger can be programmed to log results over a 1, 5, 10 etc minute period. The results displayed and logged are the volume concentration of propane in ppm, which are converted to mg/m³ by the following calculations:

$C_m = C_v$	<u>36</u> 22.4	
where	C _m	is the TOC conce

is the TOC concentration in mg/m³ (273 K; 101300 Pa)

C_v is the volume concentration of propane in ppm (by volume)

Calculations - Run 1

1. Stack Gas Velocity (V)

V =	0.075 x Cp x √∆P x √T
V =	Velocity (m/s)
Cp =	Pitot Tube Calibration Coefficient
$\Delta P =$	Mean Differential Pressure (Pa)
T =	Mean Temperature (K)

2. Stack Gas Volumetric Flow Rate (Q)

8.21 m/s 0.30 m
0.07 m ²
296.00 K
99.80 kPa
0.03 kPa
101.30 kPa

Q _(STP) =	<u>273</u> x	(<u>PA + P</u> St) x V x A	$Q_{(actual)} =$	VхА	
	Т	Рв			

 $Q_{(STP)} = 0.53 \text{ m}^{3}/\text{s}$

$Q_{(actual)} = 0.58 \text{ m}^3/\text{s}$

3. Particulate Mass Emission Rate (M)

No. of Sampling Points (n)		4
Duration at each point (s)		300 s
Nozzle area (a)		50.27 mm ²
Particulate mass (m)		0.00002 g
Stack Area (A)		0.07 m ²
$M = \frac{(A \times m)}{(n \times a \times s)} \times 10^{6}$	=	2.3E-05 g/s

M = 0.0000 g/s

4. Particulate Concentration (C) at 273K, 101.3kPa

C =	: (M /	Q _(STP))	х	1000
-----	--------	----------------------	---	------

 $C = 0.04 \text{ mg/m}^3$

1. Stack Gas Velocity (V)

V =	0.075 x Cp x √∆P x √T
-----	-----------------------

V = Velocity (m/s)

Cp = Pitot Tube Calibration Coefficient

- $\Delta P =$ Mean Differential Pressure (Pa)
- T = Mean Temperature (K)

2. Stack Gas Volumetric Flow Rate (Q)

Stack Gas Velocity (V) Stack Diameter (D)	8.14 m/s 0.30 m
Stack Area (A)	0.07 m ²
Stack Temperature (T)	296.00 K
Atmospheric Pressure (PA)	99.80 kPa
Static Pressure (Pst)	0.03 kPa
Standard Barometric Pressure (PB)	101.30 kPa

$Q_{(STP)} =$	<u>273</u>	х	(<u>P_A + P_St</u>) x V x A	$Q_{(actual)} =$	VxA	
	Т		Рв			

=

 $Q_{(STP)} = 0.52 \text{ m}^3/\text{s}$ $Q_{(actual)} = 0.58 \text{ m}^3/\text{s}$

3. Particulate Mass Emission Rate (M)

No. of Sampling Points (n) Duration at each point (s) Nozzle area (a) Particulate mass (m) Stack Area (A)

0.0000 g 0.07 m²

3.5E-05 g/s

4 300 s

50.27 mm²

 $M = (A \times m) \times 10^{6}$ (n x a x s)

M = 0.000 g/s

4. Particulate Concentration (C) at 273K, 101.3 kPa

 $C = (M / Q_{(STP)}) \times 1000$

$C = 0.07 \text{ mg/m}^3$

Total Particulate Matter Sampling Methodology

Job Preparation

A pre-site survey must first be undertaken to obtain the following information. Client details (full address & contact names), description of stack (name & location), sampling platform / access (Permanent - platform of adequate size & load capability, kick boards, hand & middle rails, free from debris, good drainage, fixed ladders with hoops and chain. Temporary - adequate size & load capability, stabilising legs, valid inspection tag, kick boards, hand & middle rails. Both types of platform must have a secure anchorage point to fix pulley system) hazards (dust, noise, temperature, gases/vapours, vibration, light, moving machinery, electricity etc) power supply and location, additional PPE required (high temperature gloves/overalls, PPE).

The Strohlein STE 4, isokinetic particulate measurement equipment, is fully inspected prior to use and its calibration status observed. This includes:

Pitot Tube - All pitot tubes are physically checked for damage, paying particular attention to the inlet holes. All dirt and blockages are removed.

Micromanometer - Digital differential pressure meters are used capable of measuring pressure in the range 0 Pa to 2250 Pa with a sensitivity of ± 1 Pa. These instruments are checked for obvious physical damage, battery life tested and calibrated status observed.

Thermocouple - Temperature is measured using k type thermocouples. Each thermocouple is inspected for obvious damage and its calibration status observed. Digital temperature meters are used in conjunction with K type thermocouples. These are also checked for obvious physical damage and their battery life tested.

Nozzles - All nozzles used have been constructed in accordance BS 3405 : 1983, section 5.3.2. Each nozzle is physically checked for damage and removed if necessary. The nozzle calibration status is observed.

Flowmeter - The flowmeter is checked for blockages and obvious physical damage. Its calibration status is also observed.

Balance - A Mettler Toledo balance is used to weigh filters. The balance is positioned on a solid base located in a specially built weighing room. The balance is serviced and calibrated routinely each year by the manufacturer and also checked daily with in-house check weights.

Rope Kit - All lifting tackle i.e. rope, pulleys, karabiners, brakes and slings are physically checked for cuts and contamination.

Should the calibration certainty of any of the above equipment be in question, that item of equipment must be recalibrated and replaced if necessary.

Filter Selection and Preparation

Stack conditions can vary greatly for temperature, moisture, acidity, low and heavy particulate loading. Following the pre-site survey, the stack gas condition should be known and the appropriate filter can be selected and prepared as described below.

Filter mediums - glass wool, quartz wool, Gelman Sciences A/C Glass Fibre filter papers, Gelman Sciences Low Ash PVC membrane filter papers, Schleicher & Schuell Glass Fibre Thimbles or Schleicher & Schuell Quartz Thimbles.

Filters are prepared by drying in an oven at 160°C for a period of one hour and then placed to cool in a dessicator. The filters are weighed accurately on a 4-figure balance and then placed in clean individual petri dishes and transported to site in a filter storage box. Spare filters are also prepared to allow for accidents and to obtain blank values.

Sampling Procedure

Suitability of Sampling Location

Before sampling can commence, a preliminary velocity and temperature survey must be undertaken along the two sampling lines at ten equally spaced points excluding the region within 5% of the effective flue diameter from the wall. The stack diameter is measured using a steel rod. If the ratio of the highest to lowest dynamic pressures exceeds 9:1 or if the ratio of the highest to lowest gas velocities exceeds 3:1, another sampling plane should be used. Sampling is undertaken from either four or eight sampling points.

Total Particulate Matter Sampling Methodology

Four sampling points are used when the ratio of the highest to lowest dynamic pressures is less than 4:1 and eight sampling points when the ratio of highest to lowest dynamic pressures exceeds 4:1 but less than 9:1 or the stack area exceeds 2.5 m^2 . Temperature is also measured at ten equally spaced points along the sampling lines and an average temperature calculated. Should the temperature at any of the sampling points differ by more than + 10% from that of the average temperature, then that point must not be used.

The required number of sampling points can now be calculated using the following:

- 4 point sampling, circular stacks: 0.15 x D and 0.85 x D.
- 4 point sampling, square stacks: 0.25 x D and 0.75 x D.
- 8 point sampling, circular stacks: 0.065 x D, 0.25 x D, 0.75 x D and 0.935 x D.
- 8 point sampling, square stacks: 0.125 x D, 0.375 x D, 0.625 x D and 0.875 x D.

Leak Checks

A leak check should be undertaken before and after the iso-kinetic sampling is carried out. This is to make sure that all suction is taken at the sampling nozzle.

Sampling

Once the iso-kinetic sampling flow rates have been calculated, the probe is inserted into the stack at 90° to the stack gas flow, as not to impinge any particulate matter on to the filter media prior to sampling. Allow the filter head and probe to attain the stack gas temperature. Start the suction device, and set the flowmeter to the correct suction rate for isokinetic sampling. At the same time turn the nozzle into flow and start the timing device.

Duration of Sampling Time

Duration of sampling time depends on :

- (a) ensuring adequate quantities of particulate matter on the filter for weighing (> 0.3 % of the filter weight).
- (b) whether cumulative or incremental sampling is undertaken.
- (c) the number of sampling points i.e. either 4 or 8 point sampling.
- (d) the continuity of plant operation.

Cumulative Sampling

After the first sample is taken from the first sampling position the control valve is closed simultaneously turning the sampling probe 90° to the stack gas flow, moving the probe to the next sample position. This process should be repeated until all the sample points have been used once.

Repeat Velocity and Temperature Readings

At each of the sampling points repeat the readings for the stack gas flow rate and stack gas temperatures. Calculate the new iso-kinetic sampling flow rates. If the stack gas velocity is more than \pm 5% from the initial readings the test result shall not be regarded as having the required accuracy. The new temperature reading should not exceed the permitted range calculated in the preliminary survey. i.e. it should be within \pm 10% of the original mean temperature.

N.B. The filter head should be cleaned and the particulate matter added to the particulate matter on the filter.

The Sampling procedure should be repeated to obtain a duplicate sample, the ratio of the two particulate emission rates should not exceed 1.5 : 1.

Weighing of Sample

The used filter should be placed in an oven at 180° C and dried thoroughly, cooled and equilibrated in a desiccator and weighed as quickly as possible so as to avoid any errors due to moisture absorption onto the filter. The gross weight of the filter should be measured to within \pm 0.1 mg. The filter weight and any residual particulate matter from the filter head can then be used in the final report to calculate the particulate concentration.

Preliminary Stack Survey		Sampling	Line A	Sampling Line B		
Traverse	Distance in	Dynamic Temperature		Dynamic	Temperature	
Point	Stack (m)	Pressure (Pa)	(°C)	Pressure (Pa)	(°C)	
1	0.02	-	-	54	23	
2	0.05	-	-	58	23	
3	0.08	-	-	52	23	
4	0.11	-	-	60	23	
5	0.14	-	-	61	23	
6	0.17	-	-	64	23	
7	0.20	-	-	65	23	
8	0.23	-	-	68	23	
9	0.26	-	-	55	23	
10	0.29	-	-	52	23	
Mean	-	-	-	59	23	

On Site Isokinetic Data Sheet

Lowest Dynamic Pressure (any line) Highest Dynamic Pressure (any line)

52 Ratio 68 (High

Ratio of Above (Highest permitted ratio 9:1)

-7

1.31:1

53

and

Temperature Range permitted for any point is between

Sampling Time (mins) 20 Nozzle size used (mm) 8.0 Run 1 Sampling **Dynamic Pressure (Pa)** Temperature (°C) Velocity (m/s) Flowmeter Point Initial Final Initial set at (m³/hr) Final Initial Final 64 23 7.96 1.44 1 54 23 8.67 2 52 53 23 23 7.82 7.89 1.42 3 68 57 23 23 8.94 8.18 1.62 4 7.82 8.40 1.42 52 60 23 23 Mean 57 59 23 23 8.13 8.29 1.47 Difference between Initial Velocity and Final Velocity = 1.83 % (Limit permitted is + 5%)

Start Filter Weight = End Filter Weight = 0.1244 g Sam 0.1244 g Sam

Sample Weight = Sample as % of Filter Weight = 0.00002 g 0.02 %

Run 2		Sampling Time (mins)		20	Nozzle size used (mm)		8.0
Sampling	Dynamic P	ressure (Pa)	Temperature (°C)		Velocity (m/s)		Flowmeter
Point	Initial	Final	Initial	Final	Initial	Final	set at (m ³ /hr)
1	64	60	23	23	8.67	8.40	1.57
2	53	51	23	23	7.89	7.74	1.43
3	57	50	23	23	8.18	7.66	1.48
4	60	57	23	23	8.40	8.18	1.52
Mean	59	55	23	23	8.29	8.00	1.50
Difference be	tween Initial	Velocity and Fir	nal Velocity =	city = -3.62 %		(Limit permitted is <u>+</u> 5%)	
Start Filter Weight = 0		0.1192	g Sample	Sample Weight =		0.00003	g
End Filter Weight =		0.1192	g Sample	as % of Filter	Weight =	0.03	%
Stack Diagram

Stack Diameter (D) =	0.30 m
Stack Area (A) =	0.07 m ²

Sampling	Distance as	Distance
Point	a % of (D)	in m
1	6.5	0.02
2	25.0	0.08
3	75.0	0.23
4	93.5	0.28

Plant Layout

Quality Assurance Checklist

Velocity Measurements:

Were water droplets present ?	No
Direction of gas flow within $\pm 20^{\circ}$ of stack axis.	Yes
Dynamic pressures > 5 Pa at all sampling points.	Yes
Ratio of highest to lowest dynamic pressures < 9 : 1.	Yes
Sampling:	
Sampling plane was correctly positioned.	Yes
Area of sampling apparatus was < 10% of stack area.	Yes
Sampling was from centres of equal areas.	Yes
Sampling at each point not less than 3 minutes.	Yes
Nozzle was facing directly upstream to within <u>+</u> 10°.	Yes
Leak check performed before and after each run and passed.	Yes
Sample Handling:	
Minimum weight of samples collected > 0.3% of filter weights.	No
Samples achieved stable weights.	Yes
Particulate samples stored for 3 months.	Yes
QA Procedures:	
Isokinetic data sheet completed and signed off by Team Leader.	Yes
Report saved electronically onto Scientifics server.	Yes
Raw data and hard copy of report filed together.	Yes

Environmental Monitoring Team

Environmental Team Leader	Paul Adamczyk BSc (Hons) Fuel and Combustion Science MSc Environmental Pollution Control MCERTS Level 2, Technical Endorsement 1 & 4 - MM 04 5			al Team Leader Paul Adamczyk BSc (Hons) Fuel and Combustion Science MSc Environmental Pollution Control MCERTS Level 2, Technical Endorsement 1 &	
Environmental Technician	Robert Adamczyk BSc Environmental Science MCERTS Trainee - MM06 721				
Report by	Paul Adamczyk Level 2 Team Leader				
Checked and Authorised By	Mark Allison	Print Name			

8th November 2006 Dated Team Leader Business Title

Conclusion

The results of this test demonstrate that under normal operating conditions, this Plant is being operated in compliance with the total particulate matter and volatile organic compounds emission limits specified in PG 6/28 (04).

Good housekeeping and maintenance of the ducting and associated Plant should be continued in order to maintain this level of Plant performance.

A regular programme of stack emissions testing in accordance with the Plant's Local Air Pollution Control Authorisation will be required to demonstrate continued compliance.

Deviations from BS 3405 : 1983

Less than 0.3% of the filter weight was collected during both sample runs. This was due to the very low level of particulate emissions from the Plant.

AIR & EMISSIONS TESTING GROUP

52 Offerton Industrial Estate, Hempshaw Lane, Stockport, SK2 5TJ. Tel: 0161 477 3004 Fax: 0161 480 4642 Mobile: 07973 319576 (24 Hours) Email: james.bealing@scientifics.com

Stack Emissions Testing Report

Total Partic	culate Ma	atter
Volatile Org	ganic Co	mpounds

VIP Polymers Ltd

Huntingdon

Air Tech Environmental Consultancy Services

25 Desma 11 Booth

Sampling Date

26th September 2006

Report by

Paul Adamczyk

Job Number

LAB 06679

Contents

	Page
Title Page	1
Introduction	2
Emissions Summary	3
Written Summary	3
Total Particulate Matter Summary	4
Volatile Organic Compounds Summary	4
Volatile Organic Compounds Emission Profile	5
Volatile Organic Compounds Emission Data	5
Volatile Organic Compounds Sampling Methodology	6
Calculations - Run 1	7
Calculations - Run 2	8
Total Particulate Matter Sampling Methodology	9
On Site Isokinetic Data Sheet	11
Stack Diagram	12
Plant Layout	12
Quality Assurance Checklist	13
Environmental Monitoring Team	14
Deviations from BS 3405 : 1983	15
Conclusion	15

Introduction

VIP Polymers Ltd operates a rubber products manufacturing process process at Huntingdon which is subject to Local Air Pollution Control by Huntingdon District Council under the Pollution Prevention and Control Regulations 2000.

Scientifics Limited, working in partnership with Air Tech ECS, were commissioned by VIP Polymers Ltd to carry out stack emissions testing to determine the release of total particulate matter and volatile organic compounds from the following Plant under normal operating conditions.

VIP Polymers Ltd
Huntingdon
25 Desma 11 Booth
26th September 2006
11:48
12:30
Normal
Rubber
None Visible

Throughout sampling, the operating conditions were maintained as above. Any deviations from BS 3405 : 1983 are noted in the conclusion.

Emissions Summary

Company Site Stack Sampling Date VIP Polymers Ltd Huntingdon 25 Desma 11 Booth 26th September 2006

Parameter	Units	Result	Limit	Outcome
Total Particulate Matter	mg/m ³	0.59	10	Passed
Particulate Emission Rate	g/s	1.1	-	-
Volatile Organic Compounds	mg/m ³	1.1	50	Passed
VOC Emission Rate	g/hr	2.1	-	-
Stack Gas Temperature	°C	28	-	-
Stack Gas Volumetric Flow Rate (Actual)	m ³ /hr	2055	-	-
Stack Gas Volumetric Flow Rate (STP)	m ³ /hr	1837	-	-
Stack Gas Velocity	m/s	8.1	-	-

All results are mean values, with particulate concentrations expressed at reference conditions.

Reference conditions are 273K, 101.3 kPa, without correction for water vapour content.

Written Summary

Total Particulate Matter F	assed

Two particulate tests were performed during continuous operating conditions. The mean sampling time was 20 minutes. The mean particulate concentration was 0.59 mg/m³ at reference conditions. This value is below the specified emission limit of 10 mg/m³. This is below the specified emission limit.

The tests were performed following the main procedural requirements of BS 3405 : 1983 using a Ströhlein STE 4 isokinetic particulate sampling train.

VOC (as Carbon) concentrations were measured continuously over a 30 minute period, with average values being recorded at 1 minute intervals. The mean VOC (as Carbon) concentration was 1.1 mg/m^3 .

The sampling was performed in accordance with the main procedural requirements of BS 12619 : 1999 using a heated sampling line and a Signal 3010 MINIFID portable VOC analyser, with detection by FID calibrated against 74.6 ppm propane certified span gas.

Total Particulate Matter Summary

Sample	Sampling Times	Concentration	Limit
Run 1	11:48 - 12:08	0.63 mg/m ³	10 mg/m ³
Run 2	12:10 - 12:30	0.55 mg/m ³	10 mg/m ³
Mean Particulate Con	centration	0.59 mg/m ³	10 mg/m ³

Sample	Sampling Times	Particulate Emission Rate	Ratio of Particulate Emission Rates
Run 1	11:48 - 12:08	0.00032 g/s	-
Run 2	12:10 - 12:30	0.00028 g/s	-
Mean Particulate Emis	sion Rate	0.00030 g/s	1.1 : 1

Volatile Organic Compounds Summary

Sampling Times	Concentration	Limit	Emission Rate	Limit
	(mg/m)	(mg/m)	(g/nr)	(g/nr)
11:48 - 12:18	1.1	50	2.1	-

Reference conditions are 273K, 101.3kPa, without correction for water vapour content.

Volatile Organic Compounds Emissions Profile

Volatile Organic Compounds Emissions Data

Time	VOC	VOC	Time	VOC	VOC
	ppm	mg/m ³		ppm	mg/m ³
11:48	0.86	1.4	12:04	1.31	2.1
11:49	0.69	1.1	12:05	1.16	1.9
11:50	0.69	1.1	12:06	1.19	1.9
11:51	0.45	0.7	12:07	1.07	1.7
11:52	0.35	0.6	12:08	1.20	1.9
11:53	0.27	0.4	12:09	1.10	1.8
11:54	0.11	0.2	12:10	1.12	1.8
11:55	0.29	0.5	12:11	1.09	1.7
11:56	0.24	0.4	12:12	1.05	1.7
11:57	0.37	0.6	12:13	0.92	1.5
11:58	0.29	0.5	12:14	0.80	1.3
11:59	0.39	0.6	12:15	0.92	1.5
12:00	0.31	0.5	12:16	0.84	1.3
12:01	0.40	0.6	12:17	0.89	1.4
12:02	0.29	0.5	12:18	0.82	1.3
12:03	0.11	0.2	Mean	0.70	1.1

Reference conditions are 273K, 101.3 kPa, without correction for water vapour content.

Volatile Organic Compounds Sampling Methodology

The Signal 3010 MINIFID Portable Heated Total Hydrocarbon Analyser uses Flame Ionisation to detect total organic carbon in a gas stream.

Checks Carried Out before Arrival On Site

The FID analyser is set up and is tested. The following are checked; the furnace and sample line temperatures, the zero and span gas calibration and the operation of the data logger.

On Site Sampling Procedure

The FID and sample line are switched on and allowed to reach operational temperature. The analyser will take 20 minutes to reach its operational temperature of 180°C. The sample line is heated to approximately 180°C to avoid VOCs condensing in the line. When the components have reached the correct operating temperature the fuel and span gas valves are opened and the FID is ignited.

The FID will take about 20 minutes before it stabilises and gives a zero ppm reading. The zero gas is fed into the FID and the zero set. The span gas is fed into the FID and the instrument adjusted to read the certified span gas value. The zero gas is fed into the FID once more to check that the reading returns to zero, if it does not, then these steps are repeated.

The probe, with a particulate filter, is then inserted into the stack, and the data logger activated.

The data logger can be programmed to log results over a 1, 5, 10 etc minute period. The results displayed and logged are the volume concentration of propane in ppm, which are converted to mg/m³ by the following calculations:

$C_m = C_v$	<u>36</u> 22.4	
where	C _m	is the TOC conce

is the TOC concentration in mg/m³ (273 K; 101300 Pa)

C_v is the volume concentration of propane in ppm (by volume)

Calculations - Run 1

1. Stack Gas Velocity (V)

V =	0.075 x Cp x √∆P x √T
V =	Velocity (m/s)
Cp =	Pitot Tube Calibration Coefficient
$\Delta P =$	Mean Differential Pressure (Pa)
-	

T = Mean Temperature (K)

2. Stack Gas Volumetric Flow Rate (Q)

8.00 m/s 0.30 m
0.07 m ²
301.00 K
99.80 kPa
0.06 kPa
101.30 kPa

Q _(STP) =	<u>273</u> x	(<u>PA + P</u> St) x V x A	$Q_{(actual)} =$	V x A	
	Т	Рв			

 $Q_{(STP)} = 0.51 \text{ m}^{3}/\text{s}$

$Q_{(actual)} = 0.57 \text{ m}^3/\text{s}$

3. Particulate Mass Emission Rate (M)

No. of Sampling Points (n)		4		
Duration at each point (s)		300 s		
Nozzle area (a)		50.27 mm ²		
Particulate mass (m)		0.00027 g		
Stack Area (A)		0.07 m ²		
$M = \frac{(A \times m)}{(n \times a \times s)} \times 10^{6}$	=	3.2E-04 g/s		

M = 0.0003 g/s

4. Particulate Concentration (C) at 273K, 101.3kPa

 $C = (M / Q_{(STP)}) \times 1000$

 $C = 0.63 \text{ mg/m}^3$

1. Stack Gas Velocity (V)

V =	0.075 x Cp x √∆P x √T
-----	-----------------------

V = Velocity (m/s)

Cp = Pitot Tube Calibration Coefficient

- $\Delta P =$ Mean Differential Pressure (Pa)
- T = Mean Temperature (K)

2. Stack Gas Volumetric Flow Rate (Q)

Stack Gas Velocity (V) Stack Diameter (D)	8.15 m/s 0.30 m
Stack Area (A)	0.07 m ²
Stack Temperature (T)	301.00 K
Atmospheric Pressure (PA)	99.80 kPa
Static Pressure (Pst)	0.06 kPa
Standard Barometric Pressure (PB)	101.30 kPa

$Q_{(STP)} =$	<u>273</u>	х	(<u>P_A + P_St</u>) x V x A	$Q_{(actual)} =$	VxA	
	Т		Рв			

=

 $Q_{(STP)} = 0.51 \text{ m}^3/\text{s}$ $Q_{(actual)} = 0.58 \text{ m}^3/\text{s}$

4 300 s

50.27 mm²

0.0002 g 0.07 m²

2.8E-04 g/s

3. Particulate Mass Emission Rate (M)

No. of Sampling Points (n) Duration at each point (s) Nozzle area (a) Particulate mass (m) Stack Area (A)

 $M = (A \times m) \times 10^{6}$ (n x a x s)

M = 0.000 g/s

4. Particulate Concentration (C) at 273K, 101.3 kPa

 $C = (M / Q_{(STP)}) \times 1000$

$C = 0.55 \text{ mg/m}^3$

Total Particulate Matter Sampling Methodology

Job Preparation

A pre-site survey must first be undertaken to obtain the following information. Client details (full address & contact names), description of stack (name & location), sampling platform / access (Permanent - platform of adequate size & load capability, kick boards, hand & middle rails, free from debris, good drainage, fixed ladders with hoops and chain. Temporary - adequate size & load capability, stabilising legs, valid inspection tag, kick boards, hand & middle rails. Both types of platform must have a secure anchorage point to fix pulley system) hazards (dust, noise, temperature, gases/vapours, vibration, light, moving machinery, electricity etc) power supply and location, additional PPE required (high temperature gloves/overalls, PPE).

The Strohlein STE 4, isokinetic particulate measurement equipment, is fully inspected prior to use and its calibration status observed. This includes:

Pitot Tube - All pitot tubes are physically checked for damage, paying particular attention to the inlet holes. All dirt and blockages are removed.

Micromanometer - Digital differential pressure meters are used capable of measuring pressure in the range 0 Pa to 2250 Pa with a sensitivity of ± 1 Pa. These instruments are checked for obvious physical damage, battery life tested and calibrated status observed.

Thermocouple - Temperature is measured using k type thermocouples. Each thermocouple is inspected for obvious damage and its calibration status observed. Digital temperature meters are used in conjunction with K type thermocouples. These are also checked for obvious physical damage and their battery life tested.

Nozzles - All nozzles used have been constructed in accordance BS 3405 : 1983, section 5.3.2. Each nozzle is physically checked for damage and removed if necessary. The nozzle calibration status is observed.

Flowmeter - The flowmeter is checked for blockages and obvious physical damage. Its calibration status is also observed.

Balance - A Mettler Toledo balance is used to weigh filters. The balance is positioned on a solid base located in a specially built weighing room. The balance is serviced and calibrated routinely each year by the manufacturer and also checked daily with in-house check weights.

Rope Kit - All lifting tackle i.e. rope, pulleys, karabiners, brakes and slings are physically checked for cuts and contamination.

Should the calibration certainty of any of the above equipment be in question, that item of equipment must be recalibrated and replaced if necessary.

Filter Selection and Preparation

Stack conditions can vary greatly for temperature, moisture, acidity, low and heavy particulate loading. Following the pre-site survey, the stack gas condition should be known and the appropriate filter can be selected and prepared as described below.

Filter mediums - glass wool, quartz wool, Gelman Sciences A/C Glass Fibre filter papers, Gelman Sciences Low Ash PVC membrane filter papers, Schleicher & Schuell Glass Fibre Thimbles or Schleicher & Schuell Quartz Thimbles.

Filters are prepared by drying in an oven at 160°C for a period of one hour and then placed to cool in a dessicator. The filters are weighed accurately on a 4-figure balance and then placed in clean individual petri dishes and transported to site in a filter storage box. Spare filters are also prepared to allow for accidents and to obtain blank values.

Sampling Procedure

Suitability of Sampling Location

Before sampling can commence, a preliminary velocity and temperature survey must be undertaken along the two sampling lines at ten equally spaced points excluding the region within 5% of the effective flue diameter from the wall. The stack diameter is measured using a steel rod. If the ratio of the highest to lowest dynamic pressures exceeds 9:1 or if the ratio of the highest to lowest gas velocities exceeds 3:1, another sampling plane should be used. Sampling is undertaken from either four or eight sampling points.

Total Particulate Matter Sampling Methodology

Four sampling points are used when the ratio of the highest to lowest dynamic pressures is less than 4:1 and eight sampling points when the ratio of highest to lowest dynamic pressures exceeds 4:1 but less than 9:1 or the stack area exceeds 2.5 m^2 . Temperature is also measured at ten equally spaced points along the sampling lines and an average temperature calculated. Should the temperature at any of the sampling points differ by more than + 10% from that of the average temperature, then that point must not be used.

The required number of sampling points can now be calculated using the following:

- 4 point sampling, circular stacks: 0.15 x D and 0.85 x D.
- 4 point sampling, square stacks: 0.25 x D and 0.75 x D.
- 8 point sampling, circular stacks: 0.065 x D, 0.25 x D, 0.75 x D and 0.935 x D.
- 8 point sampling, square stacks: 0.125 x D, 0.375 x D, 0.625 x D and 0.875 x D.

Leak Checks

A leak check should be undertaken before and after the iso-kinetic sampling is carried out. This is to make sure that all suction is taken at the sampling nozzle.

<u>Sampling</u>

Once the iso-kinetic sampling flow rates have been calculated, the probe is inserted into the stack at 90° to the stack gas flow, as not to impinge any particulate matter on to the filter media prior to sampling. Allow the filter head and probe to attain the stack gas temperature. Start the suction device, and set the flowmeter to the correct suction rate for isokinetic sampling. At the same time turn the nozzle into flow and start the timing device.

Duration of Sampling Time

Duration of sampling time depends on :

- (a) ensuring adequate quantities of particulate matter on the filter for weighing (> 0.3 % of the filter weight).
- (b) whether cumulative or incremental sampling is undertaken.
- (c) the number of sampling points i.e. either 4 or 8 point sampling.
- (d) the continuity of plant operation.

Cumulative Sampling

After the first sample is taken from the first sampling position the control valve is closed simultaneously turning the sampling probe 90° to the stack gas flow, moving the probe to the next sample position. This process should be repeated until all the sample points have been used once.

Repeat Velocity and Temperature Readings

At each of the sampling points repeat the readings for the stack gas flow rate and stack gas temperatures. Calculate the new iso-kinetic sampling flow rates. If the stack gas velocity is more than \pm 5% from the initial readings the test result shall not be regarded as having the required accuracy. The new temperature reading should not exceed the permitted range calculated in the preliminary survey. i.e. it should be within \pm 10% of the original mean temperature.

N.B. The filter head should be cleaned and the particulate matter added to the particulate matter on the filter.

The Sampling procedure should be repeated to obtain a duplicate sample, the ratio of the two particulate emission rates should not exceed 1.5 : 1.

Weighing of Sample

The used filter should be placed in an oven at 180° C and dried thoroughly, cooled and equilibrated in a desiccator and weighed as quickly as possible so as to avoid any errors due to moisture absorption onto the filter. The gross weight of the filter should be measured to within \pm 0.1 mg. The filter weight and any residual particulate matter from the filter head can then be used in the final report to calculate the particulate concentration.

Preliminary Stack Survey		Sampling	J Line A	Sampling Line B		
Traverse	Distance in	Dynamic	Temperature	Dynamic	Temperature	
Point	Stack (m)	Pressure (Pa)	(°C)	Pressure (Pa)	(°C)	
1	0.02	56	28	52	28	
2	0.05	61	28	55	28	
3	0.08	54	28	56	28	
4	0.11	50	28	56	28	
5	0.14	57	28	60	28	
6	0.17	61	28	58	28	
7	0.20	51	28	55	28	
8	0.23	48	28	52	28	
9	0.26	41	28	48	28	
10	0.29	38	28	45	28	
Mean	-	52	28	54	28	

On Site Isokinetic Data Sheet

Lowest Dynamic Pressure (any line) Highest Dynamic Pressure (any line)

38 Ratio of Above 61 (Highest permitted ratio 9:1) 1.61:1

58

and

-2

Temperature Range permitted for any point is between

Sampling Time (mins) 20 Nozzle size used (mm) 8.0 Run 1 Sampling **Dynamic Pressure (Pa)** Temperature (°C) Velocity (m/s) Flowmeter Point Initial Final Initial Initial set at (m³/hr) Final Final 58 28 28 8.54 1 61 8.32 1.52 2 48 62 28 28 7.57 8.61 1.35 3 55 45 28 28 8.11 7.33 1.44 4 7.57 7.96 1.35 48 53 28 28 Mean 53 55 28 28 7.95 8.05 1.42 Difference between Initial Velocity and Final Velocity = 1.34 % (Limit permitted is + 5%) Start Filter Weight =

End Filter Weight =

0.1256 g 0.1259 g

Sample Weight = Sample as % of Filter Weight = 0.00027 g 0.21 %

Run 2		Sampling Tim	ne (mins)	20	Nozzle size used (mm)		8.0
Sampling	Dynamic P	ressure (Pa)	Temperatu	re (°C)	Velocity	(m/s)	Flowmeter
Point	Initial	Final	Initial	Final	Initial	Final	set at (m ³ /hr)
1	58	62	28	28	8.32	8.61	1.48
2	62	66	28	28	8.61	8.88	1.53
3	45	52	28	28	7.33	7.88	1.31
4	53	48	28	28	7.96	7.57	1.42
Mean	55	57	28	28	8.05	8.24	1.43
Difference be	etween Initial	Velocity and Fir	nal Velocity =	2.19	%	(Limit permitted	is <u>+</u> 5%)
Start Filter W	eight =	0.1258	g Sample	Weight =		0.00024	g
End Filter We	eight =	0.1260	g Sample	as % of Filter	Weight =	0.19	%

Stack Diagram

Stack Diameter (D) =	0.30 m
Stack Area (A) =	0.07 m ²

Sampling	Distance as	Distance
Point	a % of (D)	in m
1	6.5	0.02
2	25.0	0.08
3	75.0	0.23
4	93.5	0.28

Plant Layout

Quality Assurance Checklist

Velocity Measurements:

Were water droplets present ?	No
Direction of gas flow within $\pm 20^{\circ}$ of stack axis.	Yes
Dynamic pressures > 5 Pa at all sampling points.	Yes
Ratio of highest to lowest dynamic pressures < 9 : 1.	Yes
Sampling:	
Sampling plane was correctly positioned.	Yes
Area of sampling apparatus was < 10% of stack area.	Yes
Sampling was from centres of equal areas.	Yes
Sampling at each point not less than 3 minutes.	Yes
Nozzle was facing directly upstream to within <u>+</u> 10°.	Yes
Leak check performed before and after each run and passed.	Yes
Sample Handling:	
Minimum weight of samples collected > 0.3% of filter weights.	No
Samples achieved stable weights.	Yes
Particulate samples stored for 3 months.	Yes
QA Procedures:	
Isokinetic data sheet completed and signed off by Team Leader.	Yes
Report saved electronically onto Scientifics server.	Yes
Raw data and hard copy of report filed together.	Yes

Environmental Monitoring Team

Environmental Team Leader	Paul Adamczyk BSc (Hons) Fuel and Combustion MSc Environmental Pollution Con MCERTS Level 2, Technical Ende	n Science htrol orsement 1 & 4 - MM 04 547
Environmental Technician	Robert Adamczyk BSc Environmental Science MCERTS Trainee - MM06 721	
Report by	Paul Adamczyk Level 2 Team Leader	
Checked and Authorised By	Mark Allison	Print Name

8th November 2006 Dated Team Leader Business Title

Conclusion

The results of this test demonstrate that under normal operating conditions, this Plant is being operated in compliance with the total particulate matter and volatile organic compounds emission limits specified in PG 6/28 (04).

Good housekeeping and maintenance of the ducting and associated Plant should be continued in order to maintain this level of Plant performance.

A regular programme of stack emissions testing in accordance with the Plant's Local Air Pollution Control Authorisation will be required to demonstrate continued compliance.

Deviations from BS 3405 : 1983

Less than 0.3% of the filter weight was collected during both sample runs. This was due to the very low level of particulate emissions from the Plant.