

NATIONAL PHYSICAL LABORATORY

Teddington Middlesex UK TW11 0LW Telephone +44 20 8977 3222

Test Report

This test report is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to recognised national standards, and to units of measurement realised at the National Physical Laboratory or other recognised national standards laboratories. This test report may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

PPC COMPLIANCE TESTING FOR PAXFORD COMPOSITES LIMITED 19TH - 20TH FEBRUARY 2013

Permit Number:

B01/02

Operator Name:

Paxford Composites Ltd

Installation Name:

Paxford Composites

Dates of Monitoring Visit:

19th - 20th February 2013

Contract Reference:

B0102/PAXFORD/PAXFORD/FEB2013/SBs/PPC/Visit 1

Client Contact:

Neil Search

Client Organisation:

Paxford Composites Ltd

Address:

2 - 4 Redwongs Way

Huntingdon **PE29 7HB**

Monitoring Organisation:

National Physical Laboratory (NPL)

Address:

Hampton Road Teddington Middlesex

TW11 0LW

Date of Report:

13th March 2013

Report Author

Simon Render

Reference: B0102/PAXFORD/PAXFORD/FEB2013/SBs/PPC/Visit 1

Report Approver:

MCERTS Registration:

Level & TEs Held:

Level 2, TE1, TE2, TE3 & TE4

Signature:

Kevin Blakley MM-03-317

NPL Authorised Signatory

Name: Mr R Robinson (for NPLML)

Signature:

Page 1 of 74

Contents Page

Part One	: Executive Summary	Page
1.1	Monitoring Objectives	3
1.2.1	Particulate Monitoring Results	4
1.2.2	Isocyanates Monitoring Results	5
1.2.3	VOCs Monitoring Results	6
1.3	Operating Information	7
1.4	Monitoring Deviations	7
1.5	Conclusions	7
1.6	References	8
Part Two	: Supporting Information	
APPEND	IX 1	
2.1.1	Emissions Testing Personnel Details	10
2.1.2	Emissions Testing Procedures	10
2.1.3	Equipment Checklist Reference	11
2.1.4	Data Capture Location Reference	11
APPEND	IX 2	
2.2.1	Stack Diagram & Traverse Information	13
2.2.2	One Minute Averaged Gaseous Emissions Data	20
2.2.3	Gaseous Emissions Graphical Data	24
2.2.4	Gas Calibration Log	28
2.2.5	Particulate Summary Sheets	32
2.2.6	Sample Sheets	36
2.2.7	Moisture Calculations	55
2.2.8	Uncertainty Calculations	62
2.2.9	Analytical Results	. 69
2.2.10	Calculations Used in Reporting Results	71

1.1 Monitoring Objectives

NPL were awarded a contract by Paxford Composites Limited to carry out emissions compliance testing at their factory in Huntingdon. The scope of work includes carrying out monitoring on three spray paint booths.

Each spray paint booth was monitored for Particulates, Isocyanates and VOCs. Each test lasted for half an hour and was conducted during normal operation of the spray booths.

Results have been reported at standard conditions (273K and 101.3~kPa) on a wet gas basis. Testing was carried out on the 19th and 20th February 2013.

Reference: B0102/PAXFORD/PAXFORD/FEB2013/SBs/PPC Visit 1 Checked by: \(\sum_{\text{N}}\) Version 1

1.2.1 Particulate Monitoring Results

Client: Site: Paxford Composites Ltd Paxford Composites

Emission Point		Spray Booth One Spray Booth Two Spray Boo				oth Three	
Test Designation		Run One	Blank	Run One	Blank	Run One	Blank
Emission Limit Value	mg/m³, Reference Conditions	50	-	50	-	50	-
Periodic Monitoring Result	Reference Conditions	<0.2	<0.2	9.4	<0.2	1.2	<0.5
Uncertainty (95% Confidence Level)	Reference Conditions	0.2	-	0.6	-	1.1	-
	Units	mg/m³					
Reference Conditions		273K, 101.3 kPa on a wet gas basis					
Date	dd/mm/yyyy	20/02	2/2013	19/02	/2013	19/02	/2013
G 1. D 1	From hh:mm	10:36	-	14:00	-	15:45	-
Sample Period	To hh:mm	11:06	-	14:30	-	16:15	-
Monitoring Method		BS EN 13284-1					
Accreditation		UKAS & MCERTS					
Process Status		Spray paint batch run					

1.2.2 Isocyanates (HDI) Monitoring Results

Client: Site: Paxford Composites Ltd Paxford Composites

Emission Point		Spray Booth One Spray Booth Two Spray Booth				oth Three	
Test Designation		Run One	Blank	Run One	Blank	Run One	Blank
Emission Limit Value	mg/m³, Reference Conditions	0.1	-	0.1	-	0.1	-
Periodic Monitoring Result	Reference Conditions	<0.0004	<0.0002	0.003	<0.0001	<0.0004	<0.0002
Uncertainty (95% Confidence Level)	Reference Conditions	0.0001	-	0.001	-	0.0001	-
	Units	mg/m³					
Reference Conditions		273K, 101.3 kPa on a wet gas basis					
Date	dd/mm/yyyy	20/02	2/2013	19/02	/2012	19/02	/2013
Correlo Doriod	From hh:mm	11:12	-	14:50	-	16:23	-
Sample Period	To hh:mm	11:42	-	15:20	-	16:53	-
Monitoring Method		US EPA CTM 36					
Accreditation		None					
Process Status		Spray paint batch run					

1.2.3 VOCs Monitoring Results

Client: Site: Paxford Composites Ltd Paxford Composites

Emission Point		Spray Booth One	Spray Booth Two	Spray Booth Three		
Test Designation		Run One	Run One	Run One		
Emission Limit Value	mgC/m³, Reference Conditions	50	50	50		
Periodic Monitoring Result	Reference Conditions	5.2	8.4	40.8		
Uncertainty (95% Confidence Level)	Reference Conditions	1.0	1.2	5.8		
	Units		mgC/m³			
Reference Conditions		2731	ζ, 101.3 kPa on a wet gas	basis		
Date	dd/mm/yyyy	20/02/2013	19/03/2013	19/03/2013		
Comple Doried	From hh:mm	11:00	14:45	16:15		
Sample Period	To hh:mm	11:30	15:15	16:45		
Monitoring Method		BS EN 12619:2013				
Accreditation		UKAS & MCERTS				
Process Status		Spray paint batch run				

1.3 Operating Information

Paxford Composites is located in Huntingdon and specialises in design and manufacturing of a wide range of components. The site also has spray painting facilities and can use a variety of different paints such as Epoxy, Polyurethane and Polyester.

The site has three spray paint booths each approximately the size of a garage, this allows large items to be transported inside. Air is pumped in from outside and can be heated if necessary to aid in the curing of the products. The paint filled air is then passed through a filter before being emitted to the atmosphere via a vent stack. Each batch run lasts approximately 20 to 30 minutes, depending upon how many layers of paint are required, and the size of the components.

Continuous or Batch Process?	Batch Process				
What part of the batch process was sampled? (If applicable)	The whole batch process was sampled				
What fuel was used during monitoring? (If applicable)	None				
What feedstock was used during monitoring? (If applicable)	None				
What was the load during monitoring?	N/A				
What abatement systems are present? Were they in operation?	A filter is installed in the vent system to reduce particulate emissions. This was in operation during the time of the monitoring				
Periodic monitoring results and corresponding CEM values	There are no CEMS installed on the spray booths				

1.4 Monitoring Deviations

Were all substances in the monitoring objectives monitored? If not why?	All substances set out in the objectives were monitored
Were all substances monitored in accordance to the relevant method? If not why?	Due to the duct area size of each spray booth, two sampling lines are required to monitor particulates to BS EN 13284:1. Whilst ports were provided, only one port on each spray booth could be accessed due to external obstructions and general accessibility
Were there any other issues relevant to the monitoring results?	No

1.5 Conclusions

NPL carried out the emissions monitoring for particulates, isocyanates and VOCs on all three paint spray booths on the 19th and 20th February 2012. No homogeneity tests have been carried out.

1.6 References

- 1. STA Risk Assessment Guide: Industrial-emission monitoring Version 12 June 2012.
- 2. Environmental Agency Manual Stack emission monitoring performance standard for Organisations Version 7.2 November 2011.
- 3. Environmental Agency M1 Technical Guidance Note Sampling requirements for stack emission monitoring Version 6 January 2010.
- 4. Environmental Agency M2 Technical Guidance Note Monitoring of stack emissions to air Version 9 January 2013.
- 5. Guidance on Assessing Measurement Uncertainty in Stack Emissions Monitoring, by Pullen J and Robinson R, Source Testing Association, Quality Guidance Note QGN1.

APPENDIX 1

2.1.1 Emissions Testing Personnel Details

Name	Role	MCERTS Number	Certification Level & Expiry Dates							
			Level 1	Level 2	TE1	TE2	TE3	TE4		
Simon Render	Team Leader	MM08 938	March-15	March-15	May-14	September-14	September-14	December-14		
Matthew Ellison	Team Leader	MM05 682	September-13	September-13	September-13	September-13	December-13	September-13		

2.1.2 Emissions Testing Procedures

Determinand	VOCs	Particulates	Isocyanates	H ₂ O	Stack Flow	Temperature
SRM Standard	BS EN 12619	BS EN 13284-1	US EPA CTM 36	BS EN 14790	BS EN 13284-1	BS EN 13284-1
Instrument	FID	APEX Method 5	APEX Method 5	APEX Method 5	Pitot	Type K Thermocouple
Instrument Serial No.	AS0234	AS0240	AS0240	AS0240	AS0466	N/A
Principle	FID	Gravimetric	HPLC	Gravimetric	Flow	Temperature
Operational Range	0 - 100 ppm	N/A	N/A	N/A	N/A	N/A
Certified Range	0 - 15 mg/m ³	N/A	N/A	N/A	N/A	N/A
Uncertainty	25%	15%	12%	20%	N/A	N/A
NPL Procedure	QPAS B 538	QPAS B 536	In House	QPAS B 536	QPAS B 536	QPAS B 536
UKAS Accreditation	YES	YES	NO	YES	YES	YES

Particulate and Isocyanate sampling was conducted using an APEX Method 5 and sampling train. A sample was extracted through a filter and then down a heated probe and sample line. The stack gas was then passed through a series of impingers to remove the moisture before passing through a dry gas meter (DGM) and out to atmosphere. The particulate filter had been weighed in a laboratory before and after testing in order to determine any weight gain. The isocyanate filter had been pre treated and sent to an analytical laboratory for analysis. The uncertainty quoted for the Isocyanate result is based upon the lab uncertainty.

VOC analysis was conducted using a SICK Bernath FID (Flame Ionisation Detector). A sample of stack gas was drawn through a heated filter and heated line before passing into the analyser.

The FID analyser zero and span settings were checked before and after each test run using zero grade nitrogen (ex BOC), a suitable gas mixture (BOC beta gas standard), traceable to national reference standards and a gas dilution system. The certified accuracies of the gas standards are listed below: -

SB1

Component	Sample Location	Cylinder ID	Certified Amount	Instrument Range	Certified Uncertainty
Propane	SB1	138227	53 ppm	0 - 100 ppm	1%

SB2

Component	Sample Location	Cylinder ID	Certified Amount	Instrument Range	Certified Uncertainty
Propane	SB2	138227	53 ppm	0 - 100 ppm	1%

SB3

Component	Sample Location	Cylinder ID	Certified Amount	Instrument Range	Certified Uncertainty
Propane	SB3	138227	53 ppm	0 - 1000 ppm	1%

These measurement uncertainties are expressed at a 95% level of confidence.

A leak test was conducted before testing to confirm hydraulic integrity of the gaseous sampling system. This was conducted by sending nitrogen down the entire sample line and ensuring a zero reading was obtained.

The electrical volt/millivolt outputs from the FID analyser was collected by a squirrel data logger and downloaded to digital media at the end of the day. Under the program used during the tests, the software records and stores individual readings every 2 seconds. From this data, the logger can perform a series of calculations to output 1 minute averaged measurement on a mass/volume basis. After each 1 minute average has been established the data buffer is reset and the process repeats.

2.1.3 Equipment Checklist Reference

See Work file PX05FEB13/CHECKLIST

2.1.4 Data Capture Location Reference

All data collected is transferred onto digital media at the end of the day, and then stored on the NPL internal servers upon arrival back at base. The location reference for this is below:

P:\Stack Emissions Team\Paxford Composites\PX05FEB13\7. Monitoring Record Sheets

APPENDIX 2

2.2.1 - Stack Diagram & Traverse Information

Test no	SB1 Velocit	у	Site: Paxford Composites Stack	Description: SB1	
Date	20-2-13		Time of Survey: 10:05		
Swirl Test Conducted		OK	SITE TEAM: SDR & MRE		
Stack Pres (with +/- above barometric if unknown enter zero)	0	mmH₂0	COMMENTS: Temperature & Velocity Trav	erse	
Pitot Type and Tube ID	А	S0466	Diagram of Sample Location:		
Conditions	Value	Units			
Stack pressure	768.63	mmHg			
Ref oxygen Value	21	%			
Moisture Content	1	%	AND DESCRIPTION OF THE PERSON		
со	0	ppm	G00007 1000		
CO ₂	0	%	2000 CO. CO.	No. of the last	
N ₂	79.05	%	AND DESCRIPTION OF THE PERSON NAMED IN		
O ₂	20.95	%		- SOURCE	
dry molecular wt	28.84				
stack molecular wt	28.73				
area of stack	0.47	m ²	THE RESERVE TO SERVE THE PARTY OF THE PARTY		
Pbar	1024.5	mbar			
Pbar	769	mmHg	Flow Criteria Measurements	Fulfilled?	
pitot tube coeft	0.83		Is the gas flow angle <15° to the duct axis?	Yes ✓	
Reference Temp	273	K	Is there any local negative flow?	No 🗸	
Reference Pressure	760	mmHg	Is the flow rate high enough to be measured?	Yes	
PITOT LEAK CHECK (Yes/No)		YES	Ratio of flows less than 3:1 (or 9:1 for pressure readings)?		

Reference: B0102/PAXFORD/PAXFORD/FEB2013/SBs/PPC Visit 1 Checked by:

Page 14 of 74 Version 1

		SAN	IPLING LINE	: A			
raver se Point	Distance into duct (m)	Δр	Δр	Stack Temp Ts	Velocity @ stack gas T&P on wet gas basis	Angle of Swirl	√∆р
		mm H ₂ O	Pa	°C	m/s	۰	
1	A10	18.20	178.42	13	14.09	<15	4.27
2	A9	16.40	160.77	13	13.38	<15	4.05
3	A8	16.00	156.85	13	13.21	<15	4.00
4	A7	11.20	109.79	13	11.05	<15	3.35
5	A6	5.60	54.90	13	7.82	<15	2.37
6	A5	4.80	47.05	13	7.24	<15	2.19
7	A4	3.80	37.25	12	6.43	<15	1.95
8	A3	3.60	35.29	12	6.26	<15	1.90
9	A2	2.40	23.53	12	5.11	<15	1.55
10	A1	2.20	21.57	12	4.89	<15	1.48
	Average values	8.4	20.6	12.6	8.9	<15	2.7

7.11.12.12.12.12.12.12.12.12.12.12.12.12.			
Duct / Stack Flow Characteristics:	SB	1	
Test No:	SB1 Velocity		
		Average	Units
Stack Velocity at stack gas T & P and a wet gas basis		8.95	ms ⁻¹
Stack flow @ STP, O ₂ (ref) and on a dry gas basis		N/A	m ³ s ⁻¹
Stack flow @ stack gas T & P and on a wet gas basis		4.20	m ³ s ⁻¹
Stack flow @ stack gas T & P and on a dry gas basis		4.16	m ³ s ⁻¹
Stack flow @ STP and on a wet gas basis		4.06	m ³ s ⁻¹
Stack flow @ STP, O ₂ (ref) and on a wet gas basis		N/A	m³s-1

Test no	SB2 Velocit	ty	Site: Pa	axford Composites	Stack Description:	S	B2
Date	1	9-2-13	Time of Survey:		12:55		
Swirl Test Conducted		OK	SITE TEAM: SDR & MRE				
Stack Pres (with +/- above barometric if unknown enter zero)	0	mmH ₂ 0	COMMENTS:	Temperature & V	elocity Traverse		
Pitot Type and Tube ID	А	S0466	Diagram of Sample L	ocation:			
Conditions	Value	Units		The Later			
Stack pressure	768.63	mmHg			1/2		
Ref oxygen Value	21	%					
Moisture Content	1	%					
со	0	ppm			- HILLS		
CO ₂	0	%			All the second		
N ₂	79.05	%		1			
O ₂	20.95	%					
dry molecular wt	28.84						
stack molecular wt	28.73			- 1			
area of stack	0.64	m ²					
Pbar	1024.5	mbar					
Pbar	769	mmHg	Flow Criteria Measur	ements			Fulfilled?
pitot tube coeft	0.83		Is the gas flow angle <	15° to the duct axis?		Yes	~
Reference Temp	273	K	Is there any local nega			No	~
Reference Pressure	760	mmHg	Is the flow rate high er	nough to be measured?		Yes	~
PITOT LEAK CHECK (Yes/No)		YES	Ratio of flows less that	n 3:1 (or 9:1 for pressu	re readings)?	Yes	~

Reference: B0102/PAXFORD/PAXFORD/FEB2013/SBs/PPC Visit 1 Checked by:

Page 16 of 74

		SAM	IPLING LINE	: A			
raver se Point	Distance into duct (m)	Δр	Δр	Stack Temp Ts	Velocity @ stack gas T&P on wet gas basis	Angle of Swirl	√∆р
		mm H ₂ O	Pa	°C	m/s	0	
1	A10	28.00	274.49	21	17.72	<15	5.29
2	A9	26.00	254.88	21	17.08	<15	5.10
3	A8	26.00	254.88	21	17.08	<15	5.10
4	A7	22.60	221.55	21	15.92	<15	4.75
5	A6	18.80	184.30	21	14.52	<15	4.34
6	A5	16.60	162.73	22	13.67	<15	4.07
7	A4	14.00	137.24	22	12.55	<15	3.74
8	A3	8.40	82.35	22	9.72	<15	2.90
9	A2	6.60	64.70	22	8.62	<15	2.57
10	A1	6.00	58.82	22	8.22	<15	2.45
	Average values	17.3	42.4	21.5	13.5	<15	4.0

/ troinge rainee			
Duct / Stack Flow Characteristics:	SI	B2	
Test No:	SB2 Velocity		
		Average	Units
Stack Velocity at stack gas T & P and a wet gas basis	3	13.51	ms ⁻¹
Stack flow @ STP, O ₂ (ref) and on a dry gas basis		N/A	m³s ⁻¹
Stack flow @ stack gas T & P and on a wet gas basis		8.65	m³s ⁻¹
Stack flow @ stack gas T & P and on a dry gas basis		8.56	m³s ⁻¹
Stack flow @ STP and on a wet gas basis		8.11	m³s ⁻¹
Stack flow @ STP, O2 (ref) and on a wet gas basis		N/A	m ³ s ⁻¹

Test no	SB3 Velocit	У	Site: Paxford Composites	Stack Description:	SB3
Date	1	9-2-13	Time of Survey:	5:15	
Swirl Test Conducted		OK	SITE TEAM: SDR & MR	E	
Stack Pres (with +/- above barometric if unknown enter zero)	20	mmH₂0	COMMENTS: Temperature & Veloci	ity Traverse	
Pitot Type and Tube ID	А	S0466	Diagram of Sample Location:		
Conditions	Value	Units			
Stack pressure	770.10	mmHg		7	
Ref oxygen Value	21	%			
Moisture Content	1	%		V	
со	0	ppm			
CO ₂	0	%			
N ₂	79.05	%			
O ₂	20.95	%			
dry molecular wt	28.84				
stack molecular wt	28.73				
area of stack	0.59	m ²			
Pbar	1024.5	mbar			
Pbar	769	mmHg	Flow Criteria Measurements		Fulfilled?
pitot tube coeft	0.83		Is the gas flow angle <15° to the duct axis?	Yes	
Reference Temp	273	K	Is there any local negative flow?	No	~
Reference Pressure	760	mmHg	Is the flow rate high enough to be measured?	Yes	
PITOT LEAK CHECK (Yes/No)		YES	Ratio of flows less than 3:1 (or 9:1 for pressure re	eadings)? Yes	

		SAN	IPLING LINE	: A			
raver se Point	Distance into duct (m)	Δp mm H ₂ O	Δp	Stack Temp Ts	Velocity @ stack gas T&P on wet gas basis m/s	Angle of Swirl	√∆р
1	A10	22.00	215.67	22	15.72	<15	4.69
2	A9	22.00	215.67	22	15.72	<15	4.69
3	A8	21.40	209.79	22	15.50	<15	4.63
4	A7	20.60	201.94	22	15.21	<15	4.54
5	A6	18,80	184.30	22	14.53	<15	4.34
6	A5	16.00	156.85	22	13.41	<15	4.00
7	A4	15.60	152.93	22	13.24	<15	3.95
8	A3	10.20	99.99	22	10.70	<15	3.19
9	A2	8.00	78.42	22	9.48	<15	2.83
10	A1	8.20	80.39	22	9.60	<15	2.86
	Average values	16.3	39.9	22.0	13.3	<15	4.0

11111130 111111			
Duct / Stack Flow Characteristics:	SB3		
Test No:	SB3 Velocity		
		Average	Units
Stack Velocity at stack gas T & P and a wet gas basis		13.31	ms ⁻¹
Stack flow @ STP, O ₂ (ref) and on a dry gas basis		N/A	m ³ s ⁻¹
Stack flow @ stack gas T & P and on a wet gas basis		7.85	m ³ s ⁻¹
Stack flow @ stack gas T & P and on a dry gas basis		7.78	m³s ⁻¹
Stack flow @ STP and on a wet gas basis		7.36	m ³ s ⁻¹
Stack flow @ STP, O2 (ref) and on a wet gas basis		N/A	m³s ⁻¹

2.2.2 - One Minute Averaged Gaseous Emissions Data

Paxford Composites - Spray Booth One 273K, 101.3 kPa, on a Wet Gas Basis 20th February 2013

Time	VOCs (Cmg/m³)
11:00	7.8
11:01	8.1
11:02	5.5
11:03	4.7
11:04	4.0
11:05	3.7
11:06	4.8
11:07	4.6
11:08	4.6
11:09	4.6
11:10	4.8
11:11	4.6
11:12	3.8
11:13	4.3
11:14	5.4
11:15	6.4
11:16	6.9
11:17	6.7
11:18	6.9
11:19	7.0
11:20	6.2
11:21	5.7
11:22	5.3
11:23	4.9
11:24	5.0
11:25	4.2
11:26	3.5
11:27	3.1
11:28	3.5
11:29	5.1
11:30	6.2
Maximum	8.1
Minimum	3.1
Average	5.2

Paxford Composites - Spray Booth Two 273K, 101.3 kPa, on a Wet Gas Basis 19th February 2013

Time	VOCs (Cmg/m³)
14:45	7.4
14:46	9.0
14:47	9.7
14:48	9.0
14:49	11.3
14:50	18.3
14:51	15.8
14:52	13.3
14:53	18.0
14:54	21.4
14:55	18.1
14:56	13.1
14:57	10.0
14:58	8.1
14:59	7.1
15:00	6.2
15:01	6.8
15:02	5.6
15:03	5.0
15:04	4.5
15:05	4.3
15:06	4.1
15:07	3.8
15:08	3.7
15:09	3.5
15:10	3.3
15:11	3.3
15:12	3.1
15:13	6.6
15:14	3.8
15:15	3.1
Maximum	21.4
Minimum	3.1
Average	8.4

Paxford Composites - Spray Booth Three 273K, 101.3 kPa on a Wet Gas Basis 19th February 2013

Time	VOCs (Cmg/m ³)
16:15	39.2
16:16	37.1
16:17	35.4
16:18	34.6
16:19	35.1
16:20	34.1
16:21	34.3
16:22	34.3
16:23	33.7
16:24	31.6
16:25	29.9
16:26	28.3
16:27	26.7
16:28	25.5
16:29	26.5
16:30	96.5
16:31	102
16:32	75.9
16:33	60.2
16:34	49.4
16:35	42.3
16:36	37.0
16:37	33.2
16:38	30.5
16:39	28.6
16:40	27.1
16:41	26.1
16:42	25.3
16:43	24.6
16:44	28.0
16:45	92.9
Maximum	102
Minimum	24.6
Average	40.8

2.2.3 - Gaseous Emissions Graphical Data

Spray Booth One Minute Averaged VOCs Emissions Data - 20th February 2013 (273.15K, 101.325kPa, on a Wet Gas basis) using the NPL Conventional Analysis Package

Spray Booth Two Minute Averaged VOCs Emissions Data - 19th February 2013 (273.15K, 101.325kPa, on a Wet Gas basis) using the NPL Conventional Analysis Package

Spray Booth Three Minute Averaged VOCs Emissions Data - 19th February 2013 (273.15K, 101.325kPa on a Wet Gas basis) using the NPL Conventional Analysis Package

2.2.4 - Gas Calibration Log

GAS CALIBRATION MEASUREMENTS

Client:							
		Paxford Composites	Date:	20/02/2013	Horiba ID:		
Site:		Paxford Composites	Job Number:	PX05FEB13	FID ID:	AS0234	
Stack ID:		SB1	Mobile Lab ID:	BD09 WUR	Sonimix ID:		_
Reference	oxygen %	N/A	Nitrogen cylinder ID:	Zero Grade	Initial N ₂ pressure bar	-	
			GAS CALIBRATION		T CALIBRATION		
		SO ₂	CO	NOx	O ₂	CO ₂	VOCs
Gas	Cylinder ID:						138227
Initial	Reg. Pressure bar						85
Cylind	er Concentration:						53.0 ppm C ₃ H
S	pan Value:		Transmission				53.0 ppm C ₃ H
Anal	yser Range:0 -						100 ppm C ₃ H
Check	Time						09:24
Zero	Reading						0.27 ppm C ₃ H
Adjust	Time						09:25
Zero	Reading						0 ppm C ₃ F
Check	Time						09:26
Span	Reading	FOR POSTALATINA					54.9 ppm C ₃ F
Adjust	Time						09:27
Span	Reading						53.0 ppm C ₃ F
Check	Time				NAME OF THE PARTY OF THE PARTY.		09:29
Zero	Reading						0.0 ppm C ₃ F
		GAS CA	LIBRATION LOG - SY	STEM CAL (Inclu	iding heated line and chiller	r unit)	
		SO ₂	CO	NOx	02	CO ₂	VOCs
5	Span Value:						53.0 ppm C31
Assessed to the same of the sa	Time						09:31
Check	Reading				O Marie Commission II		0.1 ppm
Zero	Pass/fail				The second second		PASS
	Time	Marine Services				No. of the latest of the	09:32
Check	Reading	The second second	REAL PROPERTY.	1000	A COMMENCE OF STREET	1 (A () A () ()	52.9 ppm
Span	Response Time/s	er o extractor					20
	Pass/fail		Merch Control		8 0000000000000000000000000000000000000		PASS
Check	Time		A STATE OF THE STA		With the second second		09:34
-							07104
Zero	Reading						0.1 ppm
Zero	Reading	GAS (CALIBRATION LOG - I	OST CAL (Includ	ing heated line and chiller	unit)	0.1 ppm
Zero	Reading	GAS C	CALIBRATION LOG - I	POST CAL (Includ	ing heated line and chiller	unit)	0.1 ppm
	Reading Span Value:	The second secon				All the second second second	VOCs
		The second secon				All the second second second	VOCs 53.0 ppm C ₃ F
	Span Value:	The second secon				All the second second second	VOCs 53.0 ppm C ₃ E 11:45
Check Zero	Span Value:	The second secon				All the second second second	VOCs 53.0 ppm C ₃ k 11:45 0.01 ppm C ₃ k
Check Zero	Span Value: Time Reading	The second secon				All the second second second	VOCs 53.0 ppm C ₃ k 11:45 0.01 ppm C ₃ k
Check Zero	Span Value: Time Reading Time Reading	The second secon				All the second second second	VOCs 53.0 ppm C ₃ k 11:45 0.01 ppm C ₃ k 11:46 52.4 ppm C ₃ k
Check Zero Check Span	Span Value: Time Reading Time	The second secon				All the second second second	VOCs 53.0 ppm C ₃ k 11:45 0.01 ppm C ₃ k
Check Zero Check Span Zero Re	Span Value: Time Reading Time Reading Reg Pressure pentability as % of	The second secon				All the second second second	VOCs 53.0 ppm C ₃ k 11:45 0.01 ppm C ₃ k 11:46 52.4 ppm C ₃ k 85
Check Zero Check Span Zero Re	Span Value: Time Reading Time Reading Reg Pressure peatability as % of Range	The second secon				All the second second second	VOCs 53.0 ppm C ₃ k 11:45 0.01 ppm C ₃ k 11:46 52.4 ppm C ₃ k 85
Check Zero Check Span Zero Re	Span Value: Time Reading Time Reading Reg Pressure peatability as % of Range Acceptance	The second secon				All the second second second	VOCs 53.0 ppm C ₃ i 11:45 0.01 ppm C ₃ i 11:46 52.4 ppm C ₃ i 85 0.1% Accept
Check Zero Check Span Zero Re	Span Value: Time Reading Time Reading Reg Pressure pentability as % of Range Acceptance ero Drift (%)	The second secon				All the second second second	VOCs 53.0 ppm C ₃ k 11:45 0.01 ppm C ₃ k 11:46 52.4 ppm C ₃ k 85 0.1% Accept 0.1

Name: Simon Render

MCERTS ID: MM08-938

Personnel Present: SDR/MRE

GAS CALIBRATION MEASUREMENTS

% r ID: ssure bar intration: ae: ge:0 - Time eading Time eading Time eading Time eading	Paxford Composites Paxford Composites SB2 N/A SO2	Date: Job Number: Mobile Lab ID: Nitrogen cylinder ID: GAS CALIBRAT CO	19/02/2013 PX05FEB13 BD09 WUR Zero Grade ION LOG - DIREC NOx	Horiba ID: FID 1D: Sonimix ID: Initial N ₂ pressure bar T CALIBRATION O ₂	AS0234 - - - CO ₂	VOCs 138227 85 53.0 ppm C ₃ H ₈ 53.0 ppm C ₃ H ₈
r ID: ssure bar ntration: de: ge:0 - Cime eading Cime eading Cime eading Cime cading	SB2 N/A	Mobile Lab ID: Nitrogen cylinder ID: GAS CALIBRAT	BD09 WUR Zero Grade ION LOG - DIREC	Sonimix ID: Initial N ₂ pressure bar T CALIBRATION	-	138227 85 53.0 ppm C ₃ H ₈ 53.0 ppm C ₃ H ₈
r ID: ssure bar ntration: de: ge:0 - Cime eading Cime eading Cime eading Cime cading	N/A	Nitrogen cylinder ID: GAS CALIBRAT	Zero Grade ION LOG - DIREC	Initial N ₂ pressure bar T CALIBRATION	-	138227 85 53.0 ppm C ₃ H ₁ 53.0 ppm C ₃ H ₂
r ID: ssure bar ntration: de: ge:0 - Cime eading Cime eading Cime eading Cime cading	502	GAS CALIBRAT	ION LOG - DIREC	T CALIBRATION		138227 85 53.0 ppm C ₃ H ₁ 53.0 ppm C ₃ H ₃
ssure bar entration: ue: ge:0 - Fime eading Fime eading Fime eading Fime eading Fime eading	SO ₂				CO ₂	138227 85 53.0 ppm C ₃ H ₈ 53.0 ppm C ₃ H ₈
ssure bar entration: ue: ge:0 - Fime eading Fime eading Fime eading Fime eading Fime eading						85 53.0 ppm C ₃ H ₂ 53.0 ppm C ₃ H ₃
ntration: nee: ge:0 - Fime eading Fime eading Fime eading Fime eading						53.0 ppm C ₃ H ₈ 53.0 ppm C ₃ H ₈
ge:0 - Fime eading Fime eading Fime eading Fime cading						53.0 ppm C ₃ H ₁
ge:0 - Fime eading Fime eading Fime eading Fime cading						
Fime eading Fime eading Fime eading Fime cading						
eading Fime eading Fime eading Cime						100 ppm C ₃ H
Fime eading Fime eading Fime						14:15
eading Fime eading Fime						-0.19 ppm C ₃ H ₁
Fime eading Fime						14:16
eading Fime						0 ppm C ₃ H ₄
Гime						14:17
						49.9 ppm C ₃ H ₈
eading						14:18
		Recorded			Manager (53.0 ppm C ₃ H ₄
Гіте						14:19
eading						0.0 ppm C ₃ H ₃
	GAS CA	LIBRATION LOG - S	YSTEM CAL (Inclu	ding heated line and chille	· unit)	
	SO ₂	CO	NOx	O ₂	CO ₂	VOCs
ue:						53.0 ppm C3H
l'ime			The second			14:22
eading						0.0 ppm
ss/fail						PASS
l'ime						14:24
eading						52.7 ppm
nse Time/s						20
ss/fail						PASS
Гime						14:26
eading					110000	0.1 ppm
	GAS C	ALIBRATION LOG -	POST CAL (Includ	ing heated line and chiller	unit)	
	SO ₂	CO	NOx	O ₂	CO ₂	VOCs
ue:	Name of the Salary	March March				53.0 ppm C ₃ H ₈
Гime						15:22
eading			Maria de la companya			-0.01 ppm C ₃ H ₈
l'ime						15:24
eading						53.6 ppm C ₃ H ₄
Pressure			12-12-12-12-12		- A-411	85
y as % of						
ce						0.0%
						Accept
						0.0
(70)						1.7 Accept
ries is is is in the control of the	ime ading se Time/s ss/fail ime ading ee: ime ading ime ading	ime ading se Time/s ss/fail ime ading GAS C SO2 e: ime ading ime ading pressure r as % of se ee %)	ime	ime	ime	ime

CALIBRATION TO BE CARRIED OUT BY OR UNDER THE SUPERVISION OF MCERTS QUALIFIED PERSONNEL WITH LEVEL TWO AND TE4

Name:	Simon Render	Personnal Present	SDRAARE	
MCERTS ID:	MM08-938	Personnel Present:	SDR/MRE	

GAS CALIBRATION MEASUREMENTS

AS0234	
A30234	
CO ₂ V	VOCs
	138227
	85
53 (53.0 ppm C ₃
	53.0 ppm C ₃
	000 ppm C ₃
	15:33
	0.08 ppm C ₃
	15:34
	0 ppm C ₃
	15:35
	52.9 ppm C ₃
	15:36
53.0	53.0 ppm C ₃
	15:38
	0.1 ppm C ₃
it)	
CO ₂ V	VOCs
53.0	53.0 ppm C:
	15:40
0.0) ppm
P	PASS
	15:41
52.9	52.9 ppm
	20
p	PASS
	15:42
	0.0 ppm
	VOCs
	53.0 ppm C
	17:00
-0.1	
	17:02
52.8	100000000000000000000000000000000000000
52.8	8 ppin C:
	0.0
	0.0%
	Accept
	0.0
	0.2
	Uil

CALIBRATION TO BE CARRIED OUT BY OR UNDER THE SUPERVISION OF MCERTS QUALIFIED PERSONNEL WITH LEVEL TWO AND TE4

Name:	Simon Render	Personnel Present:	SDR/MRE
MCERTS ID:	MM08-938	Personner Present.	SDR/MRE

2.2.5 - Particulate Summary Sheets

SB1 Particulates Results Summary

Field	Units	Blank	TEST 1
Date	dd/mm/yyyy	20/02/2013	20/02/2013
Test No.		Blank	PM1
Filter No.		12TF220	12TF223
Stack Description		SB1	SB1
Start Time	hh:mm		10:36
End Time	hh:mm	1 - V	11:06
Total Time	min		30
Stack Temp.	С		14
Gas Meter Temp	С		16
Gas Meter Pressure	kPa	-	102.5
Filter	mg	<0.2	<0.2
Washings	mg	<0.2	<0.2
TOTAL Mass Collected	mg	<0.2	<0.2
Test H₂0	% Vol		0.5
Stack Pressure	kPa		102.5
Nozzle Diameter	mm		5.02
Duct Area	m²		0.47
Isokinicity	%		99
Stack Velocity	Stack T & P, uncorrected, ms ⁻¹	191	11.60
Gas Vol. Sampled	Dry Gas Basis, Ambient T and P	14-14-1	0.40
Gas Vol. Sampled	Wet Gas Basis, Standard T and P	,	0.39
Particulate Concentration	Wet Gas Basis, Standard T and P, mg Nm ⁻³	<0.2	<0.2
Expanded Uncertainty	+/-mg Nm ⁻³ , 95% Conf. k=2		0.2
Emission Limit Value (ELV)	Wet Gas Basis, Standard T and P, mg Nm ⁻³	50	50
Percentage of Emission Limit Value (ELV) for Test	Wet Gas Basis, Standard T and P, %	1	0
Mass Emission	Wet Gas Basis, Standard T and P, g s ⁻¹		0.002

SB2 Particulates Results Summary

Field	Units	Blank	TEST 1
Date	dd/mm/yyyy	19/02/2013	19/02/2013
Test No.		Blank	PM1
Filter No.		12TF216	12TF217
Stack Description	114	SB2	SB2
Start Time	hh:mm		14:00
End Time	hh:mm	-	14:30
Total Time	min		30
Stack Temp.	С	-	21
Gas Meter Temp	С		20
Gas Meter Pressure	kPa		102.5
Filter	mg	<0.2	5.0
Washings	mg	<0.2	3.7
TOTAL Mass Collected	mg	<0.2	8.8
Test H₂0	% Vol		0.9
Stack Pressure	kPa		102.5
Nozzle Diameter	mm		6.02
Duct Area	m ²		0.64
Isokinicity	%	-	100
Stack Velocity Stack T & P, uncorrected, ms ⁻¹			19.37
Gas Vol. Sampled	Dry Gas Basis, Ambient T and P		0.99
Gas Vol. Sampled	Wet Gas Basis, Standard T and P		0.93
Particulate Concentration	Wet Gas Basis, Standard T and P, mg Nm ⁻³	<0.2	9.4
Expanded Uncertainty	+/-mg Nm ⁻³ , 95% Conf. k=2	1	0.6
Emission Limit Value (ELV)	Wet Gas Basis, Standard T and P, mg Nm ⁻³	50	50
Percentage of Emission Limit Value (ELV) for Test	Wet Gas Basis, Standard T and P, %	14	19
Mass Emission	Wet Gas Basis, Standard T and P, g s ⁻¹	11	0.2

SB3 Particulates Results Summary

Field	Units	Blank	TEST 1
Date	dd/mm/yyyy	19/02/2013	19/02/2013
Test No.		Blank	PM1
Filter No.		12TF218	12TF219
Stack Description		SB3	SB3
Start Time	hh:mm		15:45
End Time	hh:mm	14	16:15
Total Time	min		30
Stack Temp.	С		25
Gas Meter Temp	С		22
Gas Meter Pressure	kPa		101.8
Filter	mg	<0.2	0.5
Washings	mg	0.3	0.1
TOTAL Mass Collected	mg	<0.5	0.5
Test H₂0	% Vol		0.5
Stack Pressure	kPa	41	101.8
Nozzle Diameter	mm		5.02
Duct Area	m ²	141	0.59
Isokinicity	%		104
Stack Velocity	Stack T & P, uncorrected, ms ⁻¹	- 12	12.35
Gas Vol. Sampled	Dry Gas Basis, Ambient T and P	4	0.44
Gas Vol. Sampled	Wet Gas Basis, Standard T and P		0.42
Particulate Concentration	Wet Gas Basis, Standard T and P, mg Nm ⁻³	<0.5	1.2
Expanded Uncertainty	+/-mg Nm ⁻³ , 95% Conf. k=2	7	1.1
Emission Limit Value (ELV)	Wet Gas Basis, Standard T and P, mg Nm ⁻³	50	50
Percentage of Emission Limit Value (ELV) for Test	Wet Gas Basis, Standard T and P, %		2
Mass Emission	Wet Gas Basis, Standard T and P, g s ⁻¹		0.02

2.2.6 - Sample Sheets

Test no		PM1	Site:	Paxford	d Composites	Stack Descripti	on:	SB1
Date	20-2-13	dd/mm/yy	Filter No:	1	2TF223	Absorber No(s	s):	T01, A-D
nozzle diameter	5.0	mm	Blank I.D.:	1:	2TF220			
Stack Pres (with +/- above barometric if unknown enter zero)	0	mmH₂0	SITE TE	AM:			SDR & MRE	
		4 = = =	СОММЕ	NTS:			Particulates Test 1	
end volume reading	26.575	m ³				Control Bo	x I.D. No:	AS0003
start volume reading	26.175	m ³	end time	11:06	hh:mm	Stack Thermoc	ouple I.D. No.	AS0257A
volume sampled	0.40	m ³	start time	10:36	hh:mm	Probe I.		AS0257
Conditions	Value	Units	total time	00:30	hh:mm	Barometer	I.D. No.	AS0300
			stop time	00:00	hh:mm	Pitot I.D		AS0015
Stack pressure	768.63	mmHg	Diagram of	Sample	Location:			100 T
Gas Meter Calibration Factor Y	1.0214		1					30 V
Ref oxygen Value	21	%	1				3	
Moisture content	0.5	%	1					
co	0	ppm	1					
CO ₂	0	%	1					-1984
N ₂	79.05	%	1					BC
02	20.95	%	1			-		
dry molecular wt	28.84		1			1		-
stack molecular wt	28.78		1			The state of the s		
Orifice ∆H@ Factor	41.70	mmH ₂ 0	1					
area of stack	0.47	m ²	LEAK CHEC	K				
Pbar	1024.5	mbar	Pre Vac (in	Hg):		15 P	Post Vac (in Hg):	0.5
			1000					
Pbar	768.6	mmHg						
	768.6 0.83	ттнд	Leak rate (m	1 ³ /l) or (9	%):	<2%	eak rate (m³/l) or (%):	<2%
Pbar pitot tube coeft Reference Temp		К	Leak rate (n	1 ³ /l) or (⁴	%):	<2% L	eak rate (m ³ /l) or (%):	<2%

	Start Time at this Position or Setting	volume reading at start	Probe position	Time at each position /	Δр	Δh	Stack Temp Ts	Probe Temp Tp	Oven Temp	Impinger Temp	Resin/L ine	Meter in Tm(in)	Meter out Tm(out)	Vacuum
	hh: mm	m³		min	mm H ₂ O	mm H ₂ O	°c	°c	°C	°c	°c	°c	°c	in Hg
1:	10:36	26.1750	АЗ	5	17.80	24.9	11	158	N/A	17	N/A	15	15	0.5
2:	10:41	26.2610	АЗ	5	17.80	24.9	10	159	N/A	16	N/A	15	15	0.5
3:	10:46	26.3440	A2	5	14.60	20.4	10	160	N/A	18	N/A	16	16	0.5
4:	10:51	26.4140	A2	5	14.20	19.9	18	160	N/A	19	N/A	17	17	0.5
5:	10:56	26,4830	A1	5	6.20	8.7	17	160	N/A	19	N/A	17	17	0.5
6:	11:01	26.5290	A1	5	6.40	9.0	18	159	N/A	20	N/A	17	17	0.5
7:	11:06	26.5750	STOP											
8:														
9:														
10:														

	Start Time at this Position or Setting	volume reading at start	Probe position	Time at each position /	Δр	Δh	Stack Temp Ts	Probe Temp Tp	Oven Temp	Impinger Temp	Resin/L ine	Meter in Tm(in)	Meter out Tm(out)	Vacuum
	hh: mm	m ³		min	mm H₂O	mm H₂O	°C	°C	°C	°C	°C	°C	°C	in Hg
11:														
12:														
13:														
14:														
15:														
	Summary values	26.58		30		17.97	14.0	159.3	#DIV/0!	18.2	n/a		16.2	0.5

Duct / Stack Flow Characteristics:	SB1		Units				
Test No	PM1						
Stack Velocity at stack gas T & P and a we	et gas basis	11.60	ms ⁻¹				
Stack flow @ STP, ${\sf O_2}$ (ref) and on a dry ga	s basis	5.22	m³s ⁻¹				
Stack flow @ stack gas T & P and on a wet	gas basis	5.45	m³s ⁻¹				
Stack flow @ stack gas T & P and on a dry	ack flow @ stack gas T & P and on a dry gas basis						
Stack flow @ STP and on a wet gas basis	- •						
Stack flow @ STP, O_2 (ref) and on a wet g_4	as basis	5.72	m³s ⁻¹				
Gas vol. samp. @ STP and on a dry gas ba	asis	0.39	m³				
Gas vol. samp. @ STP, O₂(ref), and on a di	ry gas basis	0.39	m³				
Gas vol. samp. @ STP and on a wet gas ba	asis	0.39	m³				
Gas vol. samp. @ STP, ${\sf O_2}$ (ref) and on a w	0.39	m³					
Percentage Isokinicity		99	%				

Test no	ISOCY	ANATES 1	Site:	Paxford	d Composites	Stack Descript	tion:	SB1
Date	20-2-13	dd/mm/yy	Filter No:			Absorber No	(s):	T01, A-D
nozzle diameter	5.02	mm	Blank I.D.:					
Stack Pres (with +/- above barometric if unknown enter zero)	0	mmH ₂ 0	SITE TE	AM:			SDR & MRE	
			СОММЕ	NTS:			Isocyanates Test 1	
end volume reading	26.994	m ³				Control B	ox I.D. No:	AS0003
start volume reading	26.582	m ³	end time	11:42	hh:mm	Stack Thermo	couple I.D. No.	AS0257A
volume sampled	0.41	m ³	start time	11:12	hh:mm		I.D. No.	AS0257
Conditions	Value	Units	total time	00:30	hh:mm		er I.D. No.	AS0300
			stop time	00:00	hh:mm		.D. No.	AS0015
Stack pressure	768.63	mmHg	Diagram of	Sample	Location:			
Gas Meter Calibration Factor Y	0.9808							A 4
Ref oxygen Value	21	%	1					
Moisture content	0.7	%	1			-		
со	0	ppm	1			_		
CO ₂	0	%	1			100		200
N ₂	79.05	%	1					
02	20.95	%	1			100		
dry molecular wt	28.84		1			-		
stack molecular wt	28.77		1			Section 1979		
Orifice ΔH@ Factor	47.10	mmH ₂ 0	1					
			The same of the sa	N/				
	0.47	m ²	LEAK CHEC	/K				
area of stack	0.47 1024.5		LEAK CHEC Pre Vac (in			15	Post Vac (in Hg):	1
area of stack Pbar	17.51	m ²				15	Post Vac (in Hg):	1
area of stack Pbar Pbar pitot tube coeft	1024.5	m ² mbar	Pre Vac (in	Hg):	%):			1 <2%
area of stack Pbar Pbar	1024.5 768.6	m ² mbar		Hg):	%):		Post Vac (in Hg): Leak rate (m ³ /l) or (%):	

П	Start Time at this Position or Setting	volume reading at start	Probe position	Time at each position /	Δр	Δh	Stack Temp Ts	Probe Temp Tp	Oven Temp	Impinger Temp	Resin/L ine	Meter in Tm(in)	Meter out Tm(out)	Vacuum
Ш	hh: mm	m³		min	mm H ₂ O	mm H₂O	°c	°C	°C	°c	°c	°C	°C	in Hg
1:	11:12	26.582	А3	5	18.20	25.5	17	160	N/A	15	N/A	18	18	0.5
2:	11:17	26.664	АЗ	5	17.60	24.6	15	160	N/A	17	N/A	19	19	0.5
3:	11:22	26.742	A2	5	15.00	21.0	12	161	N/A	20	N/A	19	19	0.5
4:	11:27	26.811	A2	5	14.80	20.7	10	161	N/A	21	N/A	20	20	0.5
5:	11:32	26.881	A1	5	6.60	9.2	10	160	N/A	22	N/A	21	21	0.5
6:	11:37	26.937	A1	5	6.40	9.0	10	160	N/A	22	N/A	21	21	0.5
7:	11:42	26.994	STOP											
8:														
9:														
10:														

	Start Time at this Position or Setting	volume reading at start	Probe position	Time at each position /	Δр	Δh	Stack Temp Ts	Probe Temp Tp	Oven Temp	Impinger Temp	Resin/L ine	Meter in Tm(in)	Meter out Tm(out)	Vacuum
	hh: mm	m³		min	mm H₂O	mm H₂O	°C	°C	°C	°C	°C	°C	°C	in Hg
11:														
12:														
13:														
14:														
15:														
	Summary values	26.99		30		18.34	12.3	160.3	#DIV/0!	19.5	n/a		19.7	0.5

Duct / Stack Flow Characteristics:	SB1		Units
Test No	ISOCYANATES 1		
Stack Velocity at stack gas T & P and a we	et gas basis	11.69	ms ⁻¹
Stack flow @ STP, ${ m O_2}$ (ref) and on a dry ga	s basis	5.28	m³s ⁻¹
Stack flow @ stack gas T & P and on a wet	gas basis	5.50	m ³ s ⁻¹
Stack flow @ stack gas T & P and on a dry	gas basis	5.46	m³s ⁻¹
Stack flow @ STP and on a wet gas basis		5.32	m³s ⁻¹
Stack flow @ STP, O_2 (ref) and on a wet g_i	as basis	5.79	m³s ⁻¹
Gas vol. samp. @ STP and on a dry gas ba	asis	0.38	m³
Gas vol. samp. @ STP, O ₂ (ref), and on a d	ry gas basis	0.38	m ³
Gas vol. samp. @ STP and on a wet gas ba	asis	0.38	m ³
Gas vol. samp. @ STP, ${\sf O_2}$ (ref) and on a w	et gas basis	0.38	m ³
Percentage Isokinicity		95	%

Test no		PM1	Site:	Paxford	d Composites	Stack Desc	cription:	SB2
Date	19-2-13	dd/mm/yy	Filter No:	1	2TF217	Absorber	No(s):	T01, A-D
nozzle diameter	6.02	mm	Blank I.D.:	1	2TF216			
Stack Pres (with +/- above barometric if unknown enter zero)	0	mmH ₂ 0	SITE TE	AM:			SDR & MRE	
			СОММЕ	NTS:			Particulates Test 1	
end volume reading	24.667	m ³				Contro	ol Box I.D. No:	AS0240
start volume reading	23.678	m ³	end time	14:30	hh:mm	Stack Ther	mocouple I.D. No.	AS0257A
volume sampled	0.99	m ³	start time	14:00	hh:mm		bbe I.D. No.	AS0257
Conditions	Value	Units	total time	00:30	hh:mm	Baron	neter I.D. No.	AS0300
			stop time	00:00	hh:mm	Pite	ot I.D. No.	AS0466
Stack pressure	768.63	mmHg	Diagram of	Sample	Location:			
Gas Meter Calibration Factor Y	0.9808							
Ref oxygen Value	21	%						
Moisture content	0.9	%	1					
со	0	ppm						
CO ₂	0	%	1			-		
N ₂	79.05	%	1				4	
02	20.95	%	1					
dry molecular wt	28.84		1					No.
stack molecular wt	28.74		1					
Orifice ∆H@ Factor	47.10	mmH ₂ 0				1		-
area of stack	0.64	m ²	LEAK CHEC	K				
Pbar	1024.5	mbar	Pre Vac (in l	Hg):		15	Post Vac (in Hg):	1
Pbar	768.6	mmHg						
pitot tube coeft	0.83		Leak rate (m	n ³ /l) or (%):	<2%	Leak rate (m³/l) or (%):	<2%
Reference Temp	273	К			134			
Reference Pressure	760	mmHg	1					

П	Start Time at this Position or Setting	volume reading at start	Probe position	Time at each position /	Δр	Δh	Stack Temp Ts	Probe Temp Tp	Oven Temp	Impinger Temp	Resin/L ine	Meter in Tm(in)	Meter out Tm(out)	Vacuum
	hh: mm	m³		min	mm H ₂ O	mm H₂O	°c	°c	°c	°c	°c	°c	°c	in Hg
1:	14:00	23.6780	A1	5	52.00	145.6	18	160	N/A	14	N/A	14	14	0.5
2:	14:05	23.9000	A1	5	48.00	134.4	20	160	N/A	15	N/A	17	17	0.5
3:	14:10	24.1080	A2	5	38.00	106.4	20	160	N/A	16	N/A	20	20	0.5
4:	14:15	24.2890	A2	5	28.00	78.4	21	160	N/A	16	N/A	22	22	0.5
5:	14:20	24.4350	АЗ	5	24.00	67.2	22	160	N/A	17	N/A	23	23	0.5
6:	14:25	24.5690	АЗ	5	18.00	50.4	22	160	N/A	18	N/A	24	24	0.5
7:	14:30	24.6670	END											
8:														
9:														
10:														

	Start Time at this Position or Setting	volume reading at start	Probe position	Time at each position /	Δр	Δh	Stack Temp Ts	Probe Temp Tp	Oven Temp	Impinger Temp	Resin/L ine	Meter in Tm(in)	Meter out Tm(out)	Vacuum
	hh: mm	m³		min	mm H₂O	mm H₂O	°C	°C	°C	°C	°C	°C	°C	in Hg
11:														
12:														
13:														
14:														
15:														
MINISTER STATE	Summary values	24.67		30		97.07	20.5	160.0	#DIV/0!	16.0	n/a		20.0	0.5

Duct / Stack Flow Characteristics:	SB2		Units
Test No	PM1		
Stack Velocity at stack gas T & P and a we	et gas basis	19.37	ms ⁻¹
Stack flow @ STP, O_2 (ref) and on a dry ga	s basis	11.56	m³s ⁻¹
Stack flow @ stack gas T & P and on a wet	t gas basis	12.40	m³s ⁻¹
Stack flow @ stack gas T & P and on a dry	gas basis	12.29	m³s ⁻¹
Stack flow @ STP and on a wet gas basis		11.66	m³s ⁻¹
Stack flow @ STP, O_2 (ref) and on a wet g	as basis	12.84	m³s ⁻¹
Gas vol. samp. @ STP and on a dry gas ba	asis	0.92	m³
Gas vol. samp. @ STP, O_2 (ref), and on a d	ry gas basis	0.92	m³
Gas vol. samp. @ STP and on a wet gas b	asis	0.93	m³
Gas vol. samp. @ STP, ${\sf O_2}$ (ref) and on a w	et gas basis	0.93	m³
Percentage Isokinicity		100	%

Test no	ISOCY	'ANATES 1	Site:	Paxford	d Composites	Stack Descript	ion:	SB2
Date	19-2-12	dd/mm/yy	Filter No:			Absorber No(s):	T01, A-D
nozzle diameter	5.02	mm	Blank I.D.:				•	
Stack Pres (with +/- above barometric if unknown enter zero)	0	mmH ₂ 0	SITE TE	AM:			SDR & MRE	
			СОММЕ	NTS:			Isocyanates Test 1	
end volume reading	25.239	m ³				Control B	ox I.D. No:	AS0003
start volume reading	24.692	m ³	end time	15:20	hh:mm	Stack Thermo	couple I.D. No.	AS0257A
volume sampled	0.55	m ³	start time	14:50	hh:mm		I.D. No.	AS0257
Conditions	Value	Units	total time	00:30	hh:mm	Baromete		AS0300
			stop time	00:00	hh:mm	Pitot I.		AS0466
Stack pressure	758.50	mmHg	Diagram of	Sample	Location:			
Gas Meter Calibration Factor Y	0.9808							
Ref oxygen Value	21	%	1					
Moisture content	0.8	%	1					
co	0	ppm	1					
CO ₂	0	%	1					
N ₂	79.05	%	1					
O ₂	20.95	%	1					
dry molecular wt	28.84		1					
stack molecular wt	28.76		1					
Orifice ∆H@ Factor	47.10	mmH ₂ 0	1					1
area of stack	0.64	m ²	LEAK CHEC	K				
Pbar	1011	mbar	Pre Vac (in	Hg):		15	Post Vac (in Hg):	0.5
Pbar	758.5	mmHg						
			1 1 1 (3/11\ /6	v1	001		
pitot tube coeft	0.83		Leak rate (n	1 /I) Or (%):	<2%	Leak rate (m ² /l) or (%):	<2%
pitot tube coeft Reference Temp	0.83 273	K	Leak rate (n	1 /I) or (%):	<2%	Leak rate (m³/l) or (%):	<2%

П	Start Time at this Position or Setting	volume reading at start	Probe position	Time at each position /	Δр	Δh	Stack Temp Ts	Probe Temp Tp	Oven Temp	Impinger Temp	Resin/L ine	Meter in Tm(in)	Meter out Tm(out)	Vacuum
	hh: mm	m³		min	mm H₂O	mm H ₂ O	°C	°c	°C	°c	°c	°C	°c	in Hg
1:	14:50	24.6920	A1	5	26.00	36.4	19	160	N/A	17	N/A	19	19	0.5
2:	14:55	24.7870	A2	5	24.00	33.6	20	160	N/A	14	N/A	23	23	0.5
3:	15:00	24.8920	АЗ	5	10.00	14.0	25	160	N/A	16	N/A	24	24	0.5
4:	15:05	24.9480	A1	5	32.00	44.8	24	161	N/A	17	N/A	24	24	0.5
5:	15:10	25.0580	A2	5	26.00	36.4	25	160	N/A	17	N/A	24	24	0.5
6:	15:15	25.1620	АЗ	5	11.00	15.4	25	161	N/A	17	N/A	24	24	0.5
7:	15:20	25,2390	END											
8:														
9:														
10:														

	Start Time at this Position or Setting	volume reading at start	Probe position	Time at each position /	Δр	Δh	Stack Temp Ts	Probe Temp Tp	Oven Temp	Impinger Temp	Resin/L ine	Meter in Tm(in)	Meter out Tm(out)	Vacuum
	hh: mm	m³		min	mm H₂O	mm H₂O	°C	°C	°C	°C	°C	°C	°C	in Hg
11:														
12:														
13:														
14:														
15:										-				
	Summary values	25.24		30		30.10	23.0	160.3	#DIV/0!	16.3	n/a		23.0	0.5

Duct / Stack Flow Characteristics:	SB2		Units
Test No	ISOCYANATES 1		
Stack Velocity at stack gas T & P and a we	t gas basis	15.35	ms ⁻¹
Stack flow @ STP, O_2 (ref) and on a dry ga	s basis	8.97	m³s ⁻¹
Stack flow @ stack gas T & P and on a wet	gas basis	9.82	m³s ⁻¹
Stack flow @ stack gas T & P and on a dry	gas basis	9.75	m³s ⁻¹
Stack flow @ STP and on a wet gas basis		9.04	m³s ⁻¹
Stack flow @ STP, ${ m O_2}$ (ref) and on a wet ${ m gas}$	as basis	9.99	m³s ⁻¹
Gas vol. samp. @ STP and on a dry gas ba	sis	0.50	m³
Gas vol. samp. @ STP, O₂(ref), and on a di	y gas basis	0.50	m³
Gas vol. samp. @ STP and on a wet gas ba	asis	0.50	m³
Gas vol. samp. @ STP, ${\sf O_2}$ (ref) and on a w	et gas basis	0.50	m³
Percentage Isokinicity		99	%

Test no		PM1	Site:	Paxford	d Composites	Stack Descript	tion:	SB3
Date	19-2-13	dd/mm/yy	Filter No:	1	2TF219	Absorber No	(s):	T01, A-D
nozzle diameter	5.02	mm	Blank I.D.:	13	2TF218			
Stack Pres (with +/- above barometric if unknown enter zero)	0	mmH ₂ 0	SITE TE	AM:			SDR & MRE	
			СОММЕ	NTS:			Particulates Test 1	
end volume reading	25.695	m ³				Control B	ox I.D. No:	AS0003
start volume reading	25.254	m ³	end time	16:15	hh:mm	Stack Thermo	couple I.D. No.	AS0257A
volume sampled	0.44	m ³	start time	15:45	hh:mm		I.D. No.	AS0257
Conditions	Value	Units	total time	00:30	hh:mm	Baromete	er I.D. No.	AS0300
			stop time	00:00	hh:mm	Pitot I.	D. No.	AS0466
Stack pressure	763.75	mmHg	Diagram of	Sample	Location:			
Gas Meter Calibration Factor Y	1.0214		1					
Ref oxygen Value	21	%	1				A T	
Moisture content	0.5	%	1					
со	0	ppm	1				- $ $ $ $ $-$	
CO ₂	0	%	1			5-	4	
N_2	79.05	%	1					
02	20.95	%	1			111		
dry molecular wt	28.84		1					
stack molecular wt	28.79		1			V.		
Orifice ∆H@ Factor	41.70	mmH ₂ 0	1					
area of stack	0.59	m ²	LEAK CHEC	K				
Pbar	1018	mbar	Pre Vac (in I	Hg):		15	Post Vac (in Hg):	0.5
Pbar	763.8	mmHg						
pitot tube coeft	0.83		Leak rate (m	3/I) or (9	%):	<2%	Leak rate (m ³ /l) or (%):	<2%
Reference Temp	273	К						
Reference Pressure	760	mmHg	1					

	Start Time at this Position or Setting	volume reading at start	Probe position	Time at each position /	Δр	Δh	Stack Temp Ts	Probe Temp Tp	Oven Temp	Impinger Temp	Resin/L ine	Meter in Tm(in)	Meter out Tm(out)	Vacuum
	hh: mm	m³		min	mm H ₂ O	mm H ₂ O	°c	°C	°C	°C	°c	°C	°C	in Hg
1:	15:45	25.2540	АЗ	5	22.00	30.8	26	158	N/A	13	N/A	22	22	0.5
2:	15:50	25.3610	АЗ	5	20.00	28.0	24	159	N/A	13	N/A	22	22	0.5
3:	15:55	25.4670	A2	5	16.00	22.4	23	159	N/A	14	N/A	22	22	0.5
4:	16:00	25.5460	A2	5	15.00	21.0	22	160	N/A	15	N/A	22	22	0.5
5:	16:05	25.6110	A1	5	6.00	8.4	30	160	N/A	15	N/A	22	22	0.5
6:	16:10	25.6540	A1	5	6.00	8.4	24	159	N/A	15	N/A	21	21	0.5
7:	16:15	25.6950	STOP											
8:														
9:														
10:														

	Start Time at this Position or Setting	volume reading at start	Probe position	Time at each position /	Δр	Δh	Stack Temp Ts	Probe Temp Tp	Oven Temp	Impinger Temp	Resin/L ine	Meter in Tm(in)	Meter out Tm(out)	Vacuum
	hh: mm	m ³		min	mm H₂O	mm H₂O	°C	°C	°C	°C	°C	°c	°c	in Hg
11:														
12:														
13:														
14:														
15:														
	Summary values	25.70		30		19.83	24.8	159.2	#DIV/0!	14.2	n/a		21.8	0.5

Duct / Stack Flow Characteristics:	SB3		Units
Test No	PM1		
Stack Velocity at stack gas T & P and a we	et gas basis	12.35	ms ⁻¹
Stack flow @ STP, ${ m O_2}$ (ref) and on a dry ga	s basis	6.68	m³s ⁻¹
Stack flow @ stack gas T & P and on a wet	gas basis	7.29	m³s ⁻¹
Stack flow @ stack gas T & P and on a dry	gas basis	7.25	m³s ⁻¹
Stack flow @ STP and on a wet gas basis		6.71	m³s ⁻¹
Stack flow @ STP, O_2 (ref) and on a wet g_4	as basis	7.43	m³s ⁻¹
Gas vol. samp. @ STP and on a dry gas ba	sis	0.42	m³
Gas vol. samp. @ STP, ${\sf O_2}$ (ref), and on a d	ry gas basis	0.42	m ³
Gas vol. samp. @ STP and on a wet gas ba	asis	0.42	m³
Gas vol. samp. @ STP, ${\sf O_2}$ (ref) and on a w	et gas basis	0.42	m³
Percentage Isokinicity		104	%

Test no	ISOCY	ANATES 1	Site:	Paxford	d Composites	Stack Descrip	tion:	SB3
Date	19-2-13	dd/mm/yy	Filter No:			Absorber No	(s):	T01, A-D
nozzle diameter	5.02	mm	Blank I.D.:					
Stack Pres (with +/- above barometric if unknown enter zero)	0	mmH ₂ 0	SITE TE	AM:			SDR & MRE	
			COMME	NTS:			Isocyanates Test 1	
end volume reading	26.104	m ³	115			Control B	Sox I.D. No:	AS0003
start volume reading	25,700	m ³	end time	16:53	hh:mm	Stack Thermo	ocouple I.D. No.	AS0257A
volume sampled	0.40	m ³	start time	16:23	hh:mm		I.D. No.	AS0257
Conditions	Value	Units	total time	00:30	hh:mm	Baromet	er I.D. No.	AS0300
			stop time	00:00	hh:mm	Pitot I	.D. No.	AS0466
Stack pressure	768.63	mmHg	Diagram of	Sample	Location:			
Gas Meter Calibration Factor Y	1.0214		1				00	100
Ref oxygen Value	21	%	1				1	
Moisture content	0.9	%	1				_ V	
co	0	ppm	1					
CO ₂	0	%	1			k 1		
N ₂	79.05	%	1			IN		
02	20.95	%	1			1/1/		
dry molecular wt	28.84		1					
stack molecular wt	28.74		1					
Orifice ∆H@ Factor	47.10	mmH ₂ 0						
area of stack	0.59	m ²	LEAK CHEC	CK				
Pbar	1024.5	mbar	Pre Vac (in	Hg):		15	Post Vac (in Hg):	1
Pbar	768.6	mmHg						
pitot tube coeft	0.83		Leak rate (n	n ³ /l) or (9	%):	<2%	Leak rate (m ³ /l) or (%):	<2%
Reference Temp	273	К						
Reference Pressure	760	mmHg	1					

П	Start Time at this Position or Setting	volume reading at start	Probe position	Time at each position /	Δр	Δh	Stack Temp Ts	Probe Temp Tp	Oven Temp	Impinger Temp	Resin/L ine	Meter in Tm(in)	Meter out Tm(out)	Vacuum
	hh: mm	m³		min	mm H ₂ O	mm H ₂ O	°c	°c	°C	°c	°C	°C	°c	in Hg
1:	16:23	25.7000	A1	5	21.00	29.4	23	159	59	13	N/A	20	20	0.5
2:	16:28	25.7820	A2	5	20.00	28.0	29	161	N/A	13	N/A	21	21	0.5
3:	16:33	25.8630	АЗ	5	15.00	21.0	24	161	N/A	13	N/A	21	21	0.5
4:	16:38	25.9440	В1	5	15.00	21.0	29	160	N/A	15	N/A	21	21	0.5
5:	16:43	26.0160	B2	5	6.00	8.4	24	159	N/A	16	N/A	21	21	0.5
6:	16:48	26.0600	В3	5	6.20	8.7	29	160	N/A	16	N/A	20	20	0.5
7:	16:53	26.1040	END											
8:														
9:														
10:														

	Start Time at this Position or Setting	volume reading at start	Probe position	Time at each position /	Δр	Δh	Stack Temp Ts	Probe Temp Tp	Oven Temp	Impinger Temp	Resin/L ine	Meter in Tm(in)	Meter out Tm(out)	Vacuum
	hh: mm	m³		min	mm H₂O	mm H₂O	°C	°C	°C	°C	°C	°C	°C	in Hg
11:														
12:				:										
13:														
14:														
15:														
	Summary values	26.10		30		19.41	26.3	160.0	59.0	14.3	n/a		20.7	0.5

Duct / Stack Flow Characteristics:	SB3		Units
Test No	ISOCYANATES 1		
Stack Velocity at stack gas T & P and a we	et gas basis	12.24	ms ⁻¹
Stack flow @ STP, ${\sf O_2}$ (ref) and on a dry ga	s basis	6.60	m³s ⁻¹
Stack flow @ stack gas T & P and on a wet	gas basis	7.22	m³s ⁻¹
Stack flow @ stack gas T & P and on a dry	gas basis	7.16	m³s ⁻¹
Stack flow @ STP and on a wet gas basis		6.66	m³s ⁻¹
Stack flow @ STP, ${ m O_2}$ (ref) and on a wet ${ m gas}$	as basis	7.39	m³s ⁻¹
Gas vol. samp. @ STP and on a dry gas ba	asis	0.39	m³
Gas vol. samp. @ STP, O_2 (ref), and on a dr	ry gas basis	0.39	m³
Gas vol. samp. @ STP and on a wet gas ba	asis	0.39	m³
Gas vol. samp. @ STP, O₂ (ref) and on a w	et gas basis	0.39	m³
Percentage Isokinicity		97	%

2.2.7 - Moisture Calculations

National Physical Laboratory Absorber Test Form

Test No	PM1
Date	20-2-13
pbar (mbar)	1025
pbar (mmHg):	769
nozzle diameter (mm)	5.02
Temp of Meter (in)/(out) deg. C	16
ΔH _{ave} (mmH ₂ 0)	18.0
Filter No (if app)	12TF223

Site	Paxford Composites		
Stack	SB1		
Site Team:		SDR & MRE	
Data Entered	By:	Simon Render	

End Volume Reading	26.58	m³
Start Volume reading	26.18	m³
Volume Sampled	0.40	m ^a

end time	11:06	hr:min
start time	10:36	hr:min
total time	00:30	hr:min

IMPINGER	1	2	3	4	5	6	7	Initials of Analyst
Absorber Solution (Type):	DI Water	DI Water	Empty	Silica Gel				MRE
Sample No:	T1/A	T1/B	T1/C	T1/D				MRE
Analysis Required:	H2O	H2O	H2O	H2O				MRE
Weight of jars plus absorber plus washings (g)								
Weight of Jars plus absorber after sampling (g)	814.6	825.4	593.3	839.8				MRE
Weight of Jars plus absorber (g)	829.6	815.5	593.6	832.9				MRE
Weight of Jars (g)	609.9	604.3	593.6	593.0				MRE
Weight Gain (g)	-15.0	9.9	-0.3	6.9				

Total Weight Gain (1+2+3+4) (g)	1.55

Gas Volume of water at 0°C (I)	1.93
Gas Meter volume at 0°C (I)	382.58

0.5

NOTES:

at 0°C

Volume (I) of water in gas phase is Vwc= 1.2444 x wt of water collected (g)

Volume of gas sampled by meter (I) dry Vmc= 359.2 x gas meter reading(m³) x (Pbar + delta H/13.6) / (meter temp +273)

moisture content (fraction) = Vwc/(Vwc+Vmc)

an approximation is: 1 m³ of gas weighs approx 1.2 kg

moisture content aprrox =

wt of water collected (g) x 100

wt of water collected (q) + (m3 of gas on meter x 1200)

National Physical Laboratory Absorber Test Form

Test No	ISOCYANATE S 1
Date	20-2-13
pbar (mbar)	1025
pbar (mmHg):	769
nozzle diameter (mm)	5.02
Temp of Meter (in)/(out) deg. C	20
ΔH _{ave} (mmH₂0)	18.3
Filter No (if app)	19

Site	Paxford C	omposites
Stack	SB1	
ite Team:		SDR & MRE
Data Entered	By:	Simon Render

End Volume Reading	26.99	m ³
Start Volume reading	26.58	m³
Volume Sampled	0.41	m³

end time	11:42	hr:min
start time	11:12	hr:min
total time	00:30	hr:min

IMPINGER	1	2	3	4	5	6	7	Initials of Analyst
Absorber Solution (Type):	DI Water	DI Water	Empty	Silica Gel	100			MRE
Sample No:	T1/A	T1/B	T1/C	T1/D				MRE
Analysis Required:	H2O	H2O	H2O	H2O				MRE
Weight of jars plus absorber plus washings (g)								
Weight of Jars plus absorber after sampling (g)	840.3	792.4	479.4	834,6				MRE
Weight of Jars plus absorber (g)	843.5	793.1	479.4	828.6				MRE
Weight of Jars (g)	645.3	585.6	479.4	585.5				MRE
Weight Gain (g)	-3.2	-0.6	0.0	6.0				

Total Weight Gain (1+2+3+4) (g)	2.09

Gas Volume of water at 0°C (I)	2.60
Gas Meter volume at 0°C (I)	389.36

0.7

NOTES:

at 0°C

Volume (I) of water in gas phase is Vwc= 1.2444 x wt of water collected (g)

Volume of gas sampled by meter (I) dry Vmc= 359.2 x gas meter reading(m³) x (Pbar + delta H/13.6) / (meter temp +273)

moisture content (fraction) = Vwc/(Vwc+Vmc)

an approximation is: 1 m³ of gas weighs approx 1.2 kg

moisture content aprrox =

wt of water collected (g) x 100

wt of water collected (q) + (m3 of gas on meter x 1200)

National Physical Laboratory Absorber Test Form

Test No	PM1
Date	19-2-13
pbar (mbar)	1025
pbar (mmHg):	769
nozzle diameter (mm)	6.02
Temp of Meter (in)/(out) deg. C	20
ΔH _{ave} (mmH₂0)	97.1
Filter No (if app)	12TF217

Site	Paxford C	omposites
Stack	SB2	
Site Team:		SDR & MRE
Data Entered	d By:	Simon Render

End Volume Reading	24.67	m³
Start Volume reading	23.68	m³
Volume Sampled	0.99	m³

end time	14:30	hr:min
start time	14:00	hr:min
total time	00:30	hr:min

IMPINGER	1	2	3	4	5	6	7	Initials of Analyst
Absorber Solution (Type):	DI Water	DI Water	Empty	Silica Gel		771		MRE
Sample No:	T1/A	T1/B	T1/C	T1/D				MRE
Analysis Required:	H2O	H2O	H2O	H2O				MRE
Weight of jars plus absorber plus washings (g)								
Weight of Jars plus absorber after sampling (g)	759.7	811.4	598.8	851.4				MRE
Weight of Jars plus absorber (g)	762.3	812.1	593.6	846.6				MRE
Weight of Jars (g)	609.9	604.3	593.6	593.0				MRE
Weight Gain (g)	-2.6	-0.7	5.2	4.8		- 9		

	the second secon
Total Weight Gain (1+2+3+4) (g)	6.7

Gas Volume of water at 0°C (I)	8.34
Gas Meter volume at 0°C (I)	940.61

Moisture content of Gases (%)	0.9
	THE RESERVE OF THE PERSON NAMED IN

NOTES:

at 0°C

Volume (i) of water in gas phase is Vwc= 1.2444 x wt of water collected (g) Volume of gas sampled by meter (l) dry Vmc= $359.2 \times gas$ meter reading(m^3) x (Pbar + delta H/13.6) / (meter temp +273)

moisture content (fraction) = Vwc/(Vwc+Vmc)

an approximation is: 1 m³ of gas weighs approx 1.2 kg

moisture content aprrox =

wt of water collected (g) x 100

wt of water collected (q) + (m3 of gas on meter x 1200)

National Physical Laboratory Absorber Test Form

Test No	ISOCYANATE S 1
Date	19-2-12
pbar (mbar)	1011
pbar (mmHg):	758
nozzle diameter (mm)	5.02
Temp of Meter (in)/(out) deg. C	23
ΔH _{ave} (mmH ₂ 0)	30.1
Filter No (if app)	

Site	Paxford C	omposites
Stack	SB2	
Site Team:		SDR & MRE
Data Entered	By:	Simon Render

End Volume Reading	25.24	m³
Start Volume reading	24.69	m ³
Volume Sampled	0.55	m³

end time	15:20	hr:min
start time	14:50	hr:min
total time	00:30	hr:min

IMPINGER	1	2	3	4	5	6	7	Initials of Analyst
Absorber Solution (Type):	DI Water	DI Water	Empty	Silica Gel				MRE
Sample No:	T1/A	T1/B	T1/C	T1/D				MRE
Analysis Required:	H2O	H2O	H2O	H2O				MRE
Weight of jars plus absorber plus washings (g)								
Weight of Jars plus absorber after sampling (g)	833.8	790.6	479.4	846.0				MRE
Weight of Jars plus absorber (g)	840.3	792.4	479.4	834.6				MRE
Weight of Jars (g)	645.3	585.6	479.4	585,5				MRE
Weight Gain (g)	-6.5	-1.8	0	11.4				

T-1-1W-1-1-1-0-1-11 0 0 0 1 1-1	
Total Weight Gain (1+2+3+4) (g)	3.1

Gas Volume of water at 0°C (I)	3.86
Gas Meter volume at 0°C (I)	504.97

Moisture content of Gases (%)	0.8

NOTES:

at 0°C

Volume (i) of water in gas phase is Vwc= 1.2444 x wt of water collected (g)

Volume of gas sampled by meter (I) dry Vmc= 359.2 x gas meter reading(m³) x (Pbar + delta H/13.6) / (meter temp +273)

moisture content (fraction) = Vwc/(Vwc+Vmc)

an approximation is: 1 m³ of gas weighs approx 1.2 kg

moisture content aprrox =

wt of water collected (g) x 100

wt of water collected (q) + (m^a of gas on meter x 1200)

National Physical Laboratory Absorber Test Form

Test No	PM1
Date	19-2-13
pbar (mbar)	1018
pbar (mmHg):	764
nozzle diameter (mm)	5.02
Temp of Meter (in)/(out) deg. C	22
ΔH _{ave} (mmH ₂ 0)	19.8
Filter No (if app)	12TF219

Site	Paxford C	omposites
Stack	SB3	
Site Team:		SDR & MRE
Data Entered	By:	Simon Render

End Volume Reading	25.70	m ³
Start Volume reading	25.25	m ³
Volume Sampled	0.44	m³

end time	16:15	hr:min
start time	15:45	hr:min
total time	00:30	hr:min

IMPINGER	1	2	3	4	5	6	7	Initials of Analyst
Absorber Solution (Type):	DI Water	DI Water	Empty	Silica Gel				MRE
Sample No:	T1/A	T1/B	T1/C	T1/D				MRE
Analysis Required:	H2O	H2O	H20	H2O			a. i	MRE
Weight of jars plus absorber plus washings (g)						11.50	TO ST	
Weight of Jars plus absorber after sampling (g)	757.3	810.9	598.8	855.8				MRE
Weight of Jars plus absorber (g)	759.7	811.4	598.8	851.4				MRE
Weight of Jars (g)	609.9	604.3	593.6	593.0				MRE
Weight Gain (g)	-2.4	-0.5	0	4.4				

Total Weight Gain (1+2+3+4) (g)	1.5

Gas Volume of water at 0°C (I)	1.87
Gas Meter volume at 0°C (I)	411.14

Moisture content of Gases (%)	 0.5
Moisture content of dases (70)	0.5

NOTES:

at 0°C

Volume (I) of water in gas phase is Vwc= 1.2444 x wt of water collected (g)

Volume of gas sampled by meter (I) dry Vmc= 359.2 x gas meter reading(m³) x (Pbar + delta H/13.6) / (meter temp +273)

moisture content (fraction) = Vwc/(Vwc+Vmc)

an approximation is: 1 m³ of gas weighs approx 1.2 kg

moisture content aprrox =

wt of water collected (g) x 100

wt of water collected (q) + (m³ of gas on meter x 1200)

National Physical Laboratory Absorber Test Form

Test No	ISOCYANATE S 1
Date	19-2-13
pbar (mbar)	1025
pbar (mmHg):	769
nozzle diameter (mm)	5.02
Temp of Meter (in)/(out) deg. C	21
ΔH _{ave} (mmH ₂ 0)	19.4
Filter No (if app)	1111111111

Site	Paxford C	omposites
Stack	SB3	
Site Team:	_	SDR & MRE
Data Entered	d By:	Simon Render

End Volume Reading	26.10	m³
Start Volume reading	25.70	m³
Volume Sampled	0.40	m ³

end time	16:53	hr:min
start time	16:23	hr:min
total time	00:30	hr:min

IMPINGER	1	2	3	4	5	6	7	Initials of Analyst
Absorber Solution (Type):	DI Water	DI Water	Empty	Silica Gel				MRE
Sample No:	T1/A	T1/B	T1/C	T1/D				MRE
Analysis Required:	H2O	H2O	H2O	H2O				MRE
Weight of jars plus absorber plus washings (g)								
Weight of Jars plus absorber after sampling (g)	829.8	790.2	479.4	853.1				MRE
Weight of Jars plus absorber (g)	833.8	790.6	479,4	846.0				MRE
Weight of Jars (g)	645.3	585.6	479.4	585.5				MRE
Weight Gain (g)	-4.0	-0.4	0.0	7.1				

Total Weight Gain (1+2+3+4) (g)	2.7

Gas Volume of water at 0°C (I)	3.36
Gas Meter volume at 0°C (I)	380.54

Moisture content of Gases (%)	0.9

NOTES:

Volume (I) of water in gas phase is Vwc= 1.2444 x wt of water collected (g) Volume of gas sampled by meter (I) dry Vmc= 359.2 x gas meter reading(m³) x (Pbar + delta H/13.6) / (meter temp +273)

moisture content (fraction) = Vwc/(Vwc+Vmc)

an approximation is: 1 m³ of gas weighs approx 1.2 kg

moisture content aprrox =

wt of water collected (g) x 100

wt of water collected (g) + (m3 of gas on meter x 1200)

2.2.8 - Uncertainty Calculations

Uncertainty calculation for EN 13284 Determination of low range mass concentration of dust, Manual Gravimetric Method

Spray Booth One Test One

Limit value (ELV) 50 mg.m⁻³ Reference oxygen 20.9 % by volume

Measured concentration 0.2 mg.m⁻³ (at reference conditions)

Measurement Equation

$$c = \frac{m}{V} f_c$$

Measured Quantities	Symbol	Value	Standard uncertainty	1	Units	Uncertainty as percentage	Uncertainty at Iv	Requirement of std
Sampled Volume	V _m	0.40	uV _m	0.001	m³	0.25		<=2%
Sampled gas Temperature	T _m	289	uTm	2	k	0.69		<=1%
Sampled gas Pressure	$\rho_{\rm m}$	102.45	$u\rho_m$	1	kPa	0.98		<=1%
Sampled gas Humidity	H _m	0	uH _m	1	% by volume	1.00		<=1%
Mass particulate	m	0.4	um	0.23	mg	57.30	0.23	<5% of limit value
Note - Sampled gas humic	dity, temperatu	re and pressure are values at the	e gas meter					
Leak	L	2			%	2.00		<=2%
Uncollected Mass	UCM	0			mg	0		<=10%
(Instack filter - no rinse)								
Intermediate calculations								
Factor for std conds	fs	0.95						
uncertainty components	symbol	sensitivity coeff		u (in units of fs)				
	$\rho_{\rm m}$	0.009		0.009				

Corrected volume	V	0.38	uV	0.006 m ³	$V = V_m f_s$	1.58
	ufs			0.015		1.56
	T_{m}	0.003		0.007	$T_{m} = 100$ $T_{m} = 101.3$	
	$\mathbf{H}_{\mathbf{m}}$	0.010		0.010	$f_s = \frac{(100 - H_m)}{100} \frac{273}{T_m} \frac{\rho_m}{101.3}$	
	$\rho_{\rm m}$	0.009		0.009		

Parameter		Value Units	Sensitivity coeff Unce	rtainty contribution	Uncertainty as %
Corrected Volume (standard	٧	0.38 m ³	0.52	0.00 mg.m ⁻³	1.58 %
Mass	m	0.40 mg	0.50	0.11 mg.m ⁻³	57.30 %
Leak	L	0.00 mg.m ⁻³	1.00	0.00 mg.m ⁻³	1.15 %
Uncollected mass	UCM	0.00 mg	0.50	0.00 mg.m ⁻³	0.00 %
Combined measurement unce	ertainty			0.11 mg.m ⁻³	

Expanded uncertainty as percentage of measured value

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

114.68

Uncertainty calculation for EN 13284 Determination of low range mass concentration of dust, Manual Gravimetric Method

Spray Booth Two Run One

Corrected volume

ufs

V

Limit value (ELV) 50 mg.m⁻³ Reference oxygen 20.9 % by volume

Measured concentration 9.41 mg.m⁻³ (at reference conditions)

0.93

Measurement Equation

1.56

1.56

$$c = \frac{m}{V} f_c$$

 $V = V_m f_s$

Measured Quantities	Symbol	Value	Standard uncertainty		Units	Uncertainty as percentage	Uncertainty at Iv	Requirement of std
Sampled Volume	V _m	0.99	uV _m	0.001	m³	0.10		<=2%
Sampled gas Temperature	T _m	293	uTm	2	k	0.68		<=1%
Sampled gas Pressure	$\rho_{\rm m}$	102.45	$u\rho_m$	1	kPa	0.98		<=1%
Sampled gas Humidity	H _m	0	uH _m	1	% by volume	1.00		<=1%
Mass particulate	m	8.756666667	um	0.24	mg	2.71	0.51	<5% of limit value
Note - Sampled gas humic	dity, temperatu	re and pressure are values at the	gas meter		100			
Leak	L	2			%	2.00		<=2%
Uncollected Mass	UCM	0			mg	0		<=10%
(Instack filter - no rinse)								
Intermediate calculations								
Factor for std conds	fs	0.94						
uncertainty components	symbol	sensitivity coeff		u (in units of fs)				
	ρ_{m}	0.009		0.009	_			
	H_{m}	0.009		0.009		$f_s = \frac{(100 - H_m)}{100} \frac{273}{m} \frac{\rho_m}{100 \cdot 3}$		
	T_{m}	0.003		0.006		$T_m = 100$ $T_m = 101.3$		

0.015

0.015 m³

Parameter		Value Units	Sensitivity coeff Uncer	rtainty contribution	Uncertainty as %
Corrected Volume (standard	٧	0.93 m ³	10.10	0.15 mg.m ⁻³	1.56 %
Mass	m	8.76 mg	1.07	0.26 mg.m ⁻³	2.71 %
Leak	L	0.11 mg.m ⁻³	1.00	0.11 mg.m ⁻³	1.15 %
Uncollected mass	UCM	0.00 mg	1.07	0.00 mg.m ⁻³	0.00 %
Combined measurement unce	rtainty			0.32 mg.m ⁻³	

uV

Expanded uncertainty as percentage of measured value

6.75

% measured of value
expressed with a level of confidence of 95%
(Using a coverage factor k=2)

Expanded uncertainty in units of measurement

1.27

% ELV

Uncertainty calculation for EN 13284 Determination of low range mass concentration of dust, Manual Gravimetric Method

Spray Booth Three Run One

Limit value (ELV) 50 mg.m⁻³ Reference oxygen 20.9 % by volume

Measured concentration 1.25 mg.m⁻³ (at reference conditions)

Measurement Equation

$$c = \frac{m}{V} f_c$$

Measured Quantities	Symbol	Value	Standard uncertainty	1	Units	Uncertainty as percentage	Uncertainty at Iv	Requirement of std
Sampled Volume	V _m	0.44	uV_m	0.001	m ³	0.23		<=2%
Sampled gas Temperature	$T_{\rm m}$	295	uTm	2	k	0.68		<=1%
Sampled gas Pressure	$\rho_{\rm m}$	101.8	$u\rho_m$	1	kPa	0.98		<=1%
Sampled gas Humidity	H _m	0	uH _m	1	% by volume	1.00		<=1%
Mass particulate	m	0.53	um	0.23	mg	43.53	1.09	<5% of limit value
Note - Sampled gas humid	ity, temperatu	re and pressure are values at the	gas meter					
Leak	L	2			%	2.00		<=2%
Uncollected Mass	UCM	0			mg	0		<=10%
(Instack filter - no rinse)								
Intermediate calculations								
Factor for std conds	fs	0.93						
uncertainty components	symbol	sensitivity coeff		u (in units of fs)				

Factor for std conds	fs	0.93				
uncertainty components	symbol	sensitivity coeff	u (in	units of fs)		
	ρ_{m}	0.009		0.009		
	H_{m}	0.009		0.009	$f_s = \frac{(100 - H_m)}{100} \frac{273}{T} \frac{\rho_m}{101.3}$	
	$T_{\rm m}$	0.003		0.006	$T_m = 100$ $T_m = 101.3$	
	ufs			0.014		1.56
Corrected volume	V	0.41	uV	0.006 m³	$V = V_m f_x$	1.58

Parameter		Value Units	Sensitivity coeff Uncer	rtainty contribution	Uncertainty as %
Corrected Volume (standard	٧	0.41 m ³	3.04	0.02 mg.m ⁻³	1.58 %
Mass	m	0.53 mg	2.37	0.54 mg.m ⁻³	43.53 %
Leak	L	0.01 mg.m ⁻³	1.00	0.01 mg.m ⁻³	1.15 %
Uncollected mass	UCM	0.00 mg	2.37	0.00 mg.m ⁻³	0.00 %
Combined measurement unce	rtainty			0.54 mg.m ⁻³	

Expanded uncertainty as percentage of measured value	87.15 % measured of value	expressed with a level of confidence of 95% (Using a coverage factor k=2)
Expanded uncertainty in units of measurement	1.09 mg.m ⁻³	
Expanded uncertainty as percentage of limit value	2.18 % ELV	

Uncertainty calculation for Gaseous Measurement TOC to EN 12619:1999

Spray Booth One						-						
Limit value	50	mg/m³ (corrected) TOC	Cal gas conc	85.	1 mg.m ⁻³ TOC		Correction for refe		2.00	Moieture &	Droggues VD-	Tamparatura V
		1	E. H. C		Ima/m²	1			2,%	Moisture, %	Pressure, KPa 101.30	Temperature, K 273.0
Measured concentration		mg/m3	Full Scale	16	1 mg/m³	1		ref				
Measured concentration	5.2	mg/m³ (Corrected)				J		measured Uncert	20.90			
							Factors	Uncert	1.00			1.0
							Uncertainty in fact	or	0.00			0.0
							Correction Factor		1.00	uf	0.01	
Performance characteristics		Value			specification	7	Effect of drift					
Response time		value 20	seconds		60.000	1		mg/m3				
Logger sampling interval		60	seconds		00.000	1	0.18	% full scale				
Measurement period		31	minutes									
Number of readings in measuremen	nt	31		-		1						
Repeatability at zero		0.133	mg/m3		0.133 mg/m3	1						
Repeatability at span level		0.15	mg/m3		0.2 mg/m3							
Deviation from linearity(lack of fit)		0.4	mg/m3		< 0.4 mg/m3							
Zero drift		0.2	mg/m3		0.4 mg/m3 (long term)		ranges	-	des at auth			
Span drift	20	1.54	mg/m3 % of full scale/3 kPa		0.7 mg/m3 (long term) <2 % / 3 kPa	flow	min 95.00		alue at calib	kPa		
volume or pressure flow dependence atmospheric pressure dependence		0.02	% of full scale/2 kPa		<3% / 2 kPa	pressure	100.76		100.88		1	
ambient temperature dependence		0.01	mg/m3		0.5 mg/m3 /10k (at span)	temp	287		287.5		1	
O ₂ (% vol)	20	0.2	mg/m³		0.8 mg/m3	O2 range	6	16	20	% vol		
SO2 (mg/m3)	260	0.2	mg/m³			SO2 rang				mg/m3		
NO (mg/m3)	860	0.2	mg/m³		sum of all effects of these	NO range	C			mg/m3	1	
NO2 (mg/m3)	150	0.2	mg/m ^a		interferents when taking all	NO2 rang				mg/m3	1	
CO (mg/m3)	430	0.2	mg/m³		positive or all negative	CO range				mg/m3		
CO2 (% vol)	18	0.2	mg/m³		effects shall be less than 1	CO2 rang				% vol		
HCI (mg/m³)	40	0.2	mg/m ³		mg/m3	HCI range				mg/m3		
H2O (% vol)	20	0.2	mg/m³			H2O rang	93	121		% vol		
dependence on voltage		0.1	% full scale/10V % of value		<2% range within 15% of test gas value	Voltage	93	121	110	V	1	
Control gas reading difference losses in the line (leak)		1	% of value		< 0.1%vol /10 volt	(5 mg/m3)						
Uncertainty of calibration gas	_	2.00	% of value		< 2% of value							
]				
Performance characteristic			Uncertainty		Value of uncertainty quanti		mg/m3	1				
Standard deviation of repeatability a			u _{r0}		for mean	_	0.02	1				
Standard deviation of repeatability a	at span level		u _{rs}		for mean	1	use rep at zero	-				
Lack of fit			Use				0.23	ł				
Drift			U _{Odr}			_	0.17	4				
volume or pressure flow dependent	0		Uspres				0.03	4				
atmopsheric pressure dependence			Uapres				0.04					
ambient temperature dependence			Utemp				0.00					
02			U _{inted}			1	0.11	Use largest of s	um of all pos	itive or all nega	tive influences	
SO2 (mg/m3)			Uinterf				0.13					
NO (mg/m3)			U _{interf}				0.08					
NO2 (mg/m3)			Umted				0.04					
CO (mg/m3)			Uinterf				0.13					
CO2 (% vol)			Uinterf				0.13	0.17 al	+ves		Criteria	
HCI (mg/m³)			Unter				0.01	0.00 al	-ves		sum < 1 mg/m3	
H2O (% vol)			Uinterf				0.12	0.17 la	rgest		0.104459613	
Dependence on voltage			U _{ref}				0.14	Value to use for	interference u	ncertainty		
losses in the line (leak)			Uleak				0.03	U _{int}	0.17			
Uncertainty of calibration gas			U _{calib}				0.06					
control gas			U _{control}				0.30	1				
Uncertainty in factor			uf				0.06	1				
			-									
Measurement uncertainty			0.00									
Combined uncertainty			0.48	mg/m³	4							
Expanded uncertainty	k =	2	0.96	mg/m³								
					-							
Uncertainty corrected to std cond	is		0.96	mg/m³	4							
Expanded uncertainty		th a level of confidence of 95%	1.93	% ELV	-							
Expanded uncertainty		th a level of confidence of 95%	0.96	mg.m ⁻⁹	-							
Expanded uncertainty	expressed wi	th a level of confidence of 95%	18.44	% value	4							

Uncertainty calculation for Gaseous Measurement TOC to EN 13526:2001

Spray Booth Two					1	,						
Limit value	50	mg/m³ (corrected) TOC	Cal gas conc	82.8	mg.m ⁻³ TOC		Correction for refe	rence condition		ture, %	Pressure, KPa	Temperature, K
Measured concentration	0.4	mg/m3	Full Scale	161	mg/m³			ref	20.95	0.00		
Measured concentration	8.4	mg/m³ (Corrected)	ruii Scale	10	19			measured	20.95	0.00	101.30	
measured concentration	0.4	Ind (equipoles)				-	No.	Uncert	0.00	1.00	0.00	1.00
							Factors		1.00	1.00	1.00	1.00
							Uncertainty in fact Correction Factor		0.00 1.00 uf	0.01	0.00	
							Correction Factor		1.00 41		0.0	
Performance characteristics		Value			specification	3	Effect of drift					
Response time		20	seconds		60.000	4	0.29	mg/m3 % full scale	1			
Logger sampling interval		60 31	seconds minutes			1	0.18	% full scale				
Measurement period Number of readings in measurement	nt	31	minutes			1	-					
Repeatability at zero		0.133	mg/m3		0.133 mg/m3	1						
Repeatability at span level		0.15	mg/m3		0.2 mg/m3	1						
Deviation from linearity(lack of fit)		0.4	mg/m3		< 0.4 mg/m3							
Zero drift		0.03	mg/m3		0.4 mg/m3 (long term)		ranges					
Span drift		2.54	mg/m3		0.7 mg/m3 (long term)		min		value at calib			
volume or pressure flow dependent		0.02	% of full scale/3 kPa		<2 % / 3 kPa	flow	95.00		100 kPa 100.88 kPa	_		
atmospheric pressure dependence		0.8	% of full scale/2 kPa mg/m3		<3% / 2 kPa 0.5 mg/m3 /10k (at span)	pressure temp	100.76		287.5 K			
ambient temperature dependence O ₂ (% vol)	20	0.01	mg/m³		0.8 mg/m3 / Tok (at span)	O2 range	207			1		
SO2 (mg/m3)	260	0.2	mg/m ³		v.v ingrine	SO2 range						
NO (mg/m3)	860	0.2	mg/m³		sum of all effects of these	NO range	0					
NO2 (mg/m3)	150	0.2	mg/m³		interferents when taking all	NO2 range						
CO (mg/m3)	430	0.2	mg/m³		positive or all negative	CO range						
GO2 (% vol)	18	0.2	mg/m³		effects shall be less than 1	CO2 range		20	0 % vo			
HCI (mg/m³)	40	0.2	mg/m³		mg/m3	HCI range		5	0 mg/n	13		
H2O (% vol)	20	0.2	mg/m³			H2O range	0	20	0 % vo			
dependence on voltage		0.1	% full scale/10V		<2% range	Voltage	93	121	110 V			
Control gas reading difference		10	% of value		within 15% of test gas value	(5 mg/m3)						
losses in the line (leak)		2.00	% of value % of value		< 0.1%vol /10 volt < 2% of value							
Uncertainty of calibration gas		2.00	75 Of Value		C & /e OI Vado			1				
Performance characteristic			Uncertainty		Value of uncertainty quanti		mg/m3	1				
Standard deviation of repeatability	at zero		U _{rp}		for mean		0.02	1				
Standard deviation of repeatability	at span level		Ues		for mean		use rep at zero	1				
Lack of fit			Use				0.23	J				
Drift			Updr				0.17	J				
volume or pressure flow dependent	ce		Uspres				0.03					
atmopsheric pressure dependence			Uapres	V.—			0.04					
ambient temperature dependence			Utemp				0.00					
02			Uinterf				0.11	Use largest of	f sum of all positive	or all negat	tive influences	
SO2 (mg/m3)			U _{interf}				0.13					
NO (mg/m3)			U _{interf}				0.08					
NO2 (mg/m3)			Uinterf				0.04					
CO (mg/m3)			Uinterf				0.13					
CO2 (% vol)			U _{interf}				0.13	0.17	all +ves		Criteria	
HCI (mg/m³)			U _{interf}				0.01		all -ves		sum < 1 mg/m3	
H2O (% vol)			Unterf				0.12		largest		0.168079742	
Dependence on voltage			U _{min}				0.14		or interference uncerta	inty		
losses in the line (leak)			U _{reak}				0.05	Unt	0.17			
			U _{casb}				0.10					
Uncertainty of calibration gas				_		_	0.49	1				
control gas			U _{conse} uf				0.09	1				
Uncertainty in factor			ui				7.44	•				
Measurement uncertainty			1									
Combined uncertainty			0.62	mg/m³								
Expanded uncertainty	k =	2	1.23	mg/m³								
Uncertainty corrected to std con-			1.24	mg/m³								
Expanded uncertainty		ith a level of confidence of 95%	2.49	% ELV								
Expanded uncertainty		ith a level of confidence of 95%	1.24	mg.m ⁻⁹	4							
Expanded uncertainty	expressed w	ith a level of confidence of 95%	14.81	% value	1							

Uncertainty calculation for Gaseous Measurement TOC to EN 12619:1999

Spray Booth Three			
Limit value	50 mg/m³ (corrected) TOC	Cal gas conc	82.8 mg.m ⁻³ TOC
Measured concentration	40.8 mg/m3	Full Scale	1605 mg/m³
Measured concentration	40.8 mg/m³ (Corrected)		

		02, %	Moisture, %	Pressure, KPa	Temperature, K
	ref	20.95	0.00	101.30	273.00
	measured	20.95	0.00	101.30	273.00
	Uncert	0.00	1.00	0.00	1.00
Factors		1.00	1.00	1.00	1.00
Uncertainty in factor		0.00	0.01	0.00	0.00
Correction Factor		1.00	uf	0.01	

							Correction Factor		1.00 uf		0.01
erformance characteristics		Value			specification		Effect of drift				
esponse time		20	seconds		60.000	1		mg/m3			
ogger sampling interval		60	seconds					% full scale			
Measurement period		31	minutes								
lumber of readings in measuremen	nt	31									
Repeatability at zero		0.133	mg/m3		0.133 mg/m3						
Repeatability at span level		0.15	mg/m3		0.2 mg/m3	4					
Deviation from linearity(lack of fit)		0.4	mg/m3		< 0.4 mg/m3						
Zero drift		0.17	mg/m3		0.4 mg/m3 (long term)		ranges		100		
Span drift		0.33	mg/m3		0.7 mg/m3 (long term)		min		at calib		
olume or pressure flow dependent		0.02	% of full scale/3 kPa		<2 % / 3 kPa	flow	95.00		100 kPa 100.88 kPa		
atmospheric pressure dependence		0.8	% of full scale/2 kPa		<3% / 2 kPa 0.5 mg/m3 /10k (at span)	pressure	100.76		287.5 K	4	
mbient temperature dependence			mg/m3 mg/m³				6		20 % v	and I	
) ₂ (% vol)	20	0.2			0.8 mg/m3	O2 range	0		0 mg/		
SO2 (mg/m3)	260	0.2	mg/m³		- Committee	SO2 range			0 mg/		
NO (mg/m3)	860	0.2	mg/m³		sum of all effects of these	NO range	0		0 mg/		
NO2 (mg/m3)	150	0.2	mg/m³		interferents when taking all	NO2 range					
CO (mg/m3)	430	0.2	mg/m³		positive or all negative effects shall be less than 1	CO range	0		0 mg/		
O2 (% vol)	18	0.2	mg/m³		mg/m3	CO2 range			0 mg/		
HCI (mg/m³)	40	0.2	mg/m³		-	HCI range	0		0 mg/		
120 (% vol)	20	0.2	mg/m³		-00/ -00/0	H2O range Voltage	93		110 V	VOI	
dependence on voltage		0.1	% full scale/10V % of value		<2% range within 15% of test gas value		93	121	110[4		
Control gas reading difference 10 osses in the line (leak) 1			% of value	_	< 0.1%vol /10 volt	1 mg/m3)					
Uncertainty of calibration gas	_	2.00	% of value		< 2% of value						
Silvertainty of Calibration gas		2.00	77 01 1000		1.2.4	-		1			
Performance characteristic			Uncertainty		Value of uncertainty quanti	ity	mg/m3	1			
Standard deviation of repeatability at zero			Uro		for mea	n	0.02	1			
Standard deviation of repeatability a	at span level		Uns		for mean	n	use rep at zero				
ack of fit			Use				0.23]			
Drift			Uode			5.7	0.19	1			
volume or pressure flow dependent	ce		Uspres				0.31	1			
atmopsheric pressure dependence			Uapres				0.39	1			
ambient temperature dependence			U _{temp}				0.00	1			
O2			Uinter		_		0.11	Use largest of sum	of all positive	or all negative	ve influences
					-		0.13	- migosi or sum	an positive	an megati	
SO2 (mg/m3)			U _{interf}		1	-	0.08	1			
NO (mg/m3)			U _{interf}			-					
NO2 (mg/m3)			Uinterf				0.04				
CO (mg/m3)			Uinterf			_	0.13				
CO2 (% vol)			Uinterf				0.13	0.17 all +1			Criteria
HCI (mg/m³)			U _{interf}				0.01	0.00 all -v	es		um < 1 mg/m3
H2O (% vol)			Uinterf				0.12	0.17 large	st		0.816815565
Dependence on voltage			U _{rel}		A CONTRACTOR OF THE PARTY OF TH		1.38	Value to use for inte	erference uncer	rtainty	
osses in the line (leak)			Ujeak				0.24	Uint	0.17		
Incertainty of calibration gas			Ucalb				0.47				
			Ucontral			_	2.36	1			
control gas			uf				0.43	1			
Incertainty in factor			ur				0.43	4			
Measurement uncertainty											
Combined uncertainty			2.85	mg/m³							
Expanded uncertainty	k =	2	5.70	mg/m³							
Aparides uncertainty	In a	-	911.9		-						

Reference: B0102/PAXFORD/PAXFORD/FEB2013/SBs/PPC Visit 1

expressed with a level of confidence of 95%

expressed with a level of confidence of 95%

5.77 11.53 5.77 14.12

% ELV mg.m⁻³ % value

Checked by:

Uncertainty corrected to std conds

Expanded uncertainty

2.2.9 - Analytical Results

2.2.9 Analytical Laboratory Details

	Isocyanates						
Analytical Laboratory	RPS Laboratories						
UKAS Lab Number	0605						
Analytical Method	HPLC						
Accreditation	UKAS						
Date of Analysis	25/02/2013						

2.2.10 - Calculations Used in Reporting Results

Nozzle Selection

For isokinetic sampling, the pressure difference of the orifice meter must equal the pressure difference of the Pitot tube pressure multiplied by the K-factor. Where:

K = Constant x
$$C_p^2$$
 x D_n^4 x $DH_@$ x $\left(\frac{M_d}{M_s}\right) \left(\frac{1 - B_{wm}}{1 - B_{ws}}\right)^2 \left(\frac{T_m + 273}{T_s + 273}\right) \left(\frac{P_s}{P_m}\right)^2$

$$DH = K \times Dp$$

Where:-

Constant: is a constant dependent on the units used to measure the nozzle (8.038x10⁻⁵ for mm)

D_n the nozzle diameter mm

DH_@ a constant dependent on the sampler control box orifice and gas meter

 B_{ws} the percent water vapour in the emission as a fraction i.e. 12% = 0.12

 B_{wm} the percentage water vapour in the air around the meter box often assumed to be zero

C_p Pitot tube coefficient dependent on the Pitot tube type

 T_m the meter temperature in ${}^{\circ}C$

T_s the stack temperature in °C

 P_s the stack pressure

 $P_{m} \hspace{1cm} \text{the meter pressure} \\$

M_d dry gas molecular weight

M_s apparent stack gas molecular weight

DH pressure drop across the orifice (mm water)

DP differential Pitot pressure (mm water)

From this the correct nozzle size can be determined.

$$D_n = \sqrt{\frac{\text{Constant.Q}_{\text{m}}.P_{\text{m}}}{(T_{\text{m}} + 273)C_{\text{p}}}} \left(\frac{1 - B_{\text{wm}}}{1 - B_{\text{ws}}}\right) \sqrt{\frac{(T_{\text{s}} + 273)M_{\text{s}}}{(P_{\text{s}}.(\Delta P)_{avg})}}$$

Where the Constant = 0.6071 Metric

Qm = Orifice flow rate normally 21.2 actual lmin⁻¹

$$= K_{m} \sqrt{\frac{(T_{m} + 273)\Delta H}{P_{m} M_{m}}}$$

Where Km =Orifice meter coefficient

$$Km = Qm \sqrt{\frac{P_m M_m}{\Delta H (T_m + 273)}} = Const \sqrt{\frac{1}{\Delta H_{@}}}$$

Where Const = 183.7 metric

Moisture Determination Calculations

These calculations are based at 273K and 101.325kPa

To calculate moisture the following equation is used:

$$B_{ws} = \frac{0.001245 \times W_{1} \times 100}{(0.001245 \times W_{1}) + 0.359V_{m} \left(\frac{P_{b} + \frac{\Delta H_{avg}}{13.6}}{(T_{m} + 273)}\right)}$$

Particulate Concentration C_s in stack Gases At 273K and 101.325kPa and dry gas

$$C_s = \frac{W_t}{V_m} \times \frac{T_m + 273}{273} \times \frac{760}{\left(P_b + \frac{\Delta H_{avg}}{13.6}\right)} \times 1000$$
 mg/Nm²

Oxygen Concentration Correction Coxy to Particulate concentration

$$C_{\text{oxy}} = C \times \frac{(20.9 - \%O_2 \text{ref})}{(20.9 - \%O_2 \text{Meas})}$$
 mg/Nm³

Dry Molecular Weight of gases

$$M_D = 0.44(\%CO_2) + 0.32(\%O_2) + 0.28(\%CO + \%N)$$

Stack Molecular Weight of gases

$$M_s = 0.18(B_{ws}) + \frac{M_d}{100}(100 - B_{ws})$$

Stack Gas Velocity

$$(V_s)_{avg} = 34.96 \times C_p \times \sqrt{(\Delta P)_{avg}} \sqrt{\frac{T_s + 273}{P_s M_s}}$$
 m/s

Mass Emission Rate M_R

$$M_{R} = \frac{C_{m} \times (V_{s})_{avg} \times A \times 3600}{10^{6}} \quad kg/hr$$

IsoKinicity

$$I = \frac{2.12 \times 10^{8} \times Vm \times Y \times \left(P_{b} + \left(\frac{\Delta H_{avg}}{13.6}\right)\right) \left(\frac{273 + T_{s}}{273 + T_{m}}\right)}{\Theta P_{s} \pi D_{n}^{2} (Vs) avg (100 - B_{ws})} \%$$

W₁ = the weight change of the impingers during sampling in g

 $V_{\rm m}$ = volume of dry gas sample in litres at temperature of the meter box

B_{ws} = the percent water vapour in the emission
Q = length of time sampling in minutes
Y = Gas Meter Calibration correction factor

Vs = Velocity of stack gas m/s

 C_{M} = measured concentration of particulate matter (mg/m³)

 T_m = average temperature at dry gas meter ($^{\circ}$ C)

 P_b = atmospheric pressure (mmHg)

 $\%O_{2ref}$ = % oxygen at standard temperature & pressure

 $\%O_{2Meas} = \%$ oxygen measured on site

C_P = Pitot tube coefficient

DP = mean differential Pitot pressure drop (mm H_2O)

DH = mean orifice pressure drop (mm H_2O)

 D_s = diameter of stack (m) D_n = Nozzle diameter (mm) T_s = stack temperature (°C)

M_d = molecular weight of dry stack gas

 B_W = moisture fraction P_s = stack pressure (mmHg)

A = duct c.s.a. (m²)

M_s = molecular weight of wet stack gas
 M_d = molecular weight of dry stack gas
 W_t = total weight of particulate matter (g)